8,799 research outputs found
2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays
We demonstrate single-atom resolved imaging with a survival probability of
and a fidelity of , enabling us to perform repeated
high-fidelity imaging of single atoms in tweezers for thousands of times. We
further observe lifetimes under laser cooling of more than seven minutes, an
order of magnitude longer than in previous tweezer studies. Experiments are
performed with strontium atoms in tweezer arrays, which is at
a magic wavelength for the clock transition. Tuning to this wavelength is
enabled by off-magic Sisyphus cooling on the intercombination line, which lets
us choose the tweezer wavelength almost arbitrarily. We find that a single not
retro-reflected cooling beam in the radial direction is sufficient for
mitigating recoil heating during imaging. Moreover, this cooling technique
yields temperatures below K, as measured by release and recapture.
Finally, we demonstrate clock-state resolved detection with average survival
probability of and average state detection fidelity of .
Our work paves the way for atom-by-atom assembly of large defect-free arrays of
alkaline-earth atoms, in which repeated interrogation of the clock transition
is an imminent possibility.Comment: 6 pages, 5 figures, 1 vide
Global environmental effects of impact-generated aerosols: Results from a general circulation model
Cooling and darkening at Earth's surface are expected to result from the interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet, according to the one-dimensional radioactive-convective atmospheric model (RCM) of Pollack et al. An analogous three-dimensional general circulation model (GCM) simulation obtains the same basic result as the RCM but there are important differences in detail. In the GCM simulation the heat capacity of the oceans, not included in the RCM, substantially mitigates land surface cooling. On the other hand, the GCM's low heat capacity surface allows surface temperatures to drop much more rapidly than reported by Pollack et al. These two differences between RCM and GCM simulations were noted previously in studies of nuclear winter; GCM results for comet/asteroid winter, however, are much more severe than for nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on Earth. In the simulation the global average of land surface temperature drops to the freezing point in just 4.5 days, one-tenth the time required in the Pollack et al. simulation. In addition to the standard case of Pollack et al., which represents the collision of a 10-km diameter asteroid with Earth, additional scenarios are considered ranging from the statistically more frequent impacts of smaller asteroids to the collision of Halley's comet with Earth. In the latter case the kinetic energy of impact is extremely large due to the head-on collision resulting from Halley's retrograde orbit
Nothing to hide: An X-ray survey for young stellar objects in the Pipe Nebula
We have previously analyzed sensitive mid-infrared observations to establish
that the Pipe Nebula has a very low star-formation efficiency. That study
focused on YSOs with excess infrared emission (i.e, protostars and pre-main
sequence stars with disks), however, and could have missed a population of more
evolved pre-main sequence stars or Class III objects (i.e., young stars with
dissipated disks that no longer show excess infrared emission). Evolved
pre-main sequence stars are X-ray bright, so we have used ROSAT All-Sky Survey
data to search for diskless pre-main sequence stars throughout the Pipe Nebula.
We have also analyzed archival XMM-Newton observations of three prominent areas
within the Pipe: Barnard 59, containing a known cluster of young stellar
objects; Barnard 68, a dense core that has yet to form stars; and the Pipe
molecular ring, a high-extinction region in the bowl of the Pipe. We
additionally characterize the X-ray properties of YSOs in Barnard 59. The ROSAT
and XMM-Newton data provide no indication of a significant population of more
evolved pre-main sequence stars within the Pipe, reinforcing our previous
measurement of the Pipe's very low star formation efficiency.Comment: Accepted for publication in Ap
- …
