530 research outputs found

    Renormalisation-theoretic analysis of non-equilibrium phase transitions II: The effect of perturbations on rate coefficients in the Becker-Doring equations

    Full text link
    We study in detail the application of renormalisation theory to models of cluster aggregation and fragmentation of relevance to nucleation and growth processes. In particular, we investigate the Becker-Doring (BD) equations, originally formulated to describe and analyse non-equilibrium phase transitions, but more recently generalised to describe a wide range of physicochemical problems. We consider here rate coefficients which depend on the cluster size in a power-law fashion, but now perturbed by small amplitude random noise. Power-law rate coefficients arise naturally in the theory of surface-controlled nucleation and growth processes. The noisy perturbations on these rates reflect the effect of microscopic variations in such mean-field coefficients, thermal fluctuations and/or experimental uncertainties. In the present paper we generalise our earlier work that identified the nine classes into which all dynamical behaviour must fall by investigating how random perturbations of the rate coefficients influence the steady-state and kinetic behaviour of the coarse-grained, renormalised system. We are hence able to confirm the existence of a set of up to nine universality classes for such BD systems.Comment: 30 pages, to appear in J Phys A Math Ge

    Renormalisation-theoretic analysis of non-equilibrium phase transitions I: The Becker-Doring equations with power law rate coefficients

    Full text link
    We study in detail the application of renormalisation theory to models of cluster aggregation and fragmentation of relevance to nucleation and growth processes. We investigate the Becker-Dorging equations, originally formulated to describe and analyse non-equilibrium phase transitions, and more recently generalised to describe a wide range of physicochemical problems. In the present paper we analyse how the systematic coarse-graining renormalisation of the \BD system of equations affects the aggregation and fragmentation rate coefficients. We consider the case of power-law size-dependent cluster rate coefficients which we show lead to only three classes of system that require analysis: coagulation-dominated systems, fragmentation-dominated systems and those where coagulation and fragmentation are exactly balanced. We analyse the late-time asymptotics associated with each class.Comment: 18 pages, to appear in J Phys A Math Ge

    Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media

    Full text link
    The behaviour of two dimensional binary and ternary amphiphilic fluids under flow conditions is investigated using a hydrodynamic lattice gas model. After the validation of the model in simple cases (Poiseuille flow, Darcy's law for single component fluids), attention is focussed on the properties of binary immiscible fluids in porous media. An extension of Darcy's law which explicitly admits a viscous coupling between the fluids is verified, and evidence of capillary effects are described. The influence of a third component, namely surfactant, is studied in the same context. Invasion simulations have also been performed. The effect of the applied force on the invasion process is reported. As the forcing level increases, the invasion process becomes faster and the residual oil saturation decreases. The introduction of surfactant in the invading phase during imbibition produces new phenomena, including emulsification and micellisation. At very low fluid forcing levels, this leads to the production of a low-resistance gel, which then slows down the progress of the invading fluid. At long times (beyond the water percolation threshold), the concentration of remaining oil within the porous medium is lowered by the action of surfactant, thus enhancing oil recovery. On the other hand, the introduction of surfactant in the invading phase during drainage simulations slows down the invasion process -- the invading fluid takes a more tortuous path to invade the porous medium -- and reduces the oil recovery (the residual oil saturation increases).Comment: 48 pages, 26 figures. Phys. Rev. E (in press

    Prediction of the functional properties of ceramic materials from composition using artificial neural networks

    Get PDF
    We describe the development of artificial neural networks (ANN) for the prediction of the properties of ceramic materials. The ceramics studied here include polycrystalline, inorganic, non-metallic materials and are investigated on the basis of their dielectric and ionic properties. Dielectric materials are of interest in telecommunication applications where they are used in tuning and filtering equipment. Ionic and mixed conductors are the subjects of a concerted effort in the search for new materials that can be incorporated into efficient, clean electrochemical devices of interest in energy production and greenhouse gas reduction applications. Multi-layer perceptron ANNs are trained using the back-propagation algorithm and utilise data obtained from the literature to learn composition-property relationships between the inputs and outputs of the system. The trained networks use compositional information to predict the relative permittivity and oxygen diffusion properties of ceramic materials. The results show that ANNs are able to produce accurate predictions of the properties of these ceramic materials which can be used to develop materials suitable for use in telecommunication and energy production applications

    Symmetry-breaking in chiral polymerisation

    Get PDF
    We propose a model for chiral polymerisation and investigate its symmetric and asymmetric solutions. The model has a source species which decays into left- and right-handed types of monomer, each of which can polymerise to form homochiral chains; these chains are susceptible to `poisoning' by the opposite handed monomer. Homochiral polymers are assumed to influence the proportion of each type of monomer formed from the precursor. We show that for certain parameter values a positive feedback mechanism makes the symmetric steady-state solution unstable. The kinetics of polymer formation are then analysed in the case where the system starts from zero concentrations of monomer and chains. We show that following a long induction time, extremely large concentrations of polymers are formed for a short time, during this time an asymmetry introduced into the system by a random external perturbation may be massively amplified. The system then approaches one of the steady-state solutions described above.Comment: 26pages, 6 Figure

    Dissipative Particle Dynamics with energy conservation

    Full text link
    Dissipative particle dynamics (DPD) does not conserve energy and this precludes its use in the study of thermal processes in complex fluids. We present here a generalization of DPD that incorporates an internal energy and a temperature variable for each particle. The dissipation induced by the dissipative forces between particles is invested in raising the internal energy of the particles. Thermal conduction occurs by means of (inverse) temperature differences. The model can be viewed as a simplified solver of the fluctuating hydrodynamic equations and opens up the possibility of studying thermal processes in complex fluids with a mesoscopic simulation technique.Comment: 5 page

    Weighted decomposition in high-performance lattice-Boltzmann simulations: Are some lattice sites more equal than others?

    Get PDF
    Obtaining a good load balance is a significant challenge in scaling up lattice-Boltzmann simulations of realistic sparse problems to the exascale. Here we analyze the effect of weighted decomposition on the performance of the HemeLB lattice-Boltzmann simulation environment, when applied to sparse domains. Prior to domain decomposition, we assign wall and in/outlet sites with increased weights which reflect their increased computational cost. We combine our weighted decomposition with a second optimization, which is to sort the lattice sites according to a space filling curve. We tested these strategies on a sparse bifurcation and very sparse aneurysm geometry, and find that using weights reduces calculation load imbalance by up to 85 %, although the overall communication overhead is higher than some of our runs.This work has received funding from the CRESTA and MAPPER projects within the EC-FP7 (ICT-2011.9.13) under Grant Agreements nos. 287703 and 261507, and from EPSRC Grants EP/I017909/1 (www.2020science.net) and EP/I034602/1

    Foundations of Dissipative Particle Dynamics

    Full text link
    We derive a mesoscopic modeling and simulation technique that is very close to the technique known as dissipative particle dynamics. The model is derived from molecular dynamics by means of a systematic coarse-graining procedure. Thus the rules governing our new form of dissipative particle dynamics reflect the underlying molecular dynamics; in particular all the underlying conservation laws carry over from the microscopic to the mesoscopic descriptions. Whereas previously the dissipative particles were spheres of fixed size and mass, now they are defined as cells on a Voronoi lattice with variable masses and sizes. This Voronoi lattice arises naturally from the coarse-graining procedure which may be applied iteratively and thus represents a form of renormalisation-group mapping. It enables us to select any desired local scale for the mesoscopic description of a given problem. Indeed, the method may be used to deal with situations in which several different length scales are simultaneously present. Simulations carried out with the present scheme show good agreement with theoretical predictions for the equilibrium behavior.Comment: 18 pages, 7 figure

    Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media

    Full text link
    We report the results of a study of multiphase flow in porous media. A Darcy's law for steady multiphase flow was investigated for both binary and ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager reciprocity were shown to be a good approximation of the simulation data. The dependence of the relative permeability coefficients on water saturation was investigated and showed good qualitative agreement with experimental data. Non-steady state invasion flows were investigated, with particular interest in the asymptotic residual oil saturation. The addition of surfactant to the invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.

    A comparison of the Bravyi-Kitaev and Jordan-Wigner transformations for the quantum simulation of quantum chemistry

    Get PDF
    The ability to perform classically intractable electronic structure calculations is often cited as one of the principal applications of quantum computing. A great deal of theoretical algorithmic development has been performed in support of this goal. Most techniques require a scheme for mapping electronic states and operations to states of and operations upon qubits. The two most commonly used techniques for this are the Jordan-Wigner transformation and the Bravyi-Kitaev transformation. However, comparisons of these schemes have previously been limited to individual small molecules. In this paper we discuss resource implications for the use of the Bravyi-Kitaev mapping scheme, specifically with regard to the number of quantum gates required for simulation. We consider both small systems which may be simulatable on near-future quantum devices, and systems sufficiently large for classical simulation to be intractable. We use 86 molecular systems to demonstrate that the use of the Bravyi-Kitaev transformation is typically at least approximately as efficient as the canonical Jordan-Wigner transformation, and results in substantially reduced gate count estimates when performing limited circuit optimisations.Comment: 46 pages, 11 figure
    corecore