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Abstract. Obtaining a good load balance is a significant challenge in
scaling up lattice-Boltzmann simulations of realistic sparse problems to
the exascale. Here we analyze the effect of weighted decomposition on the
performance of the HemeLB lattice-Boltzmann simulation environment,
when applied to sparse domains. Prior to domain decomposition, we as-
sign wall and in/outlet sites with increased weights which reflect their
increased computational cost. We combine our weighted decomposition
with a second optimization, which is to sort the lattice sites according
to a space filling curve. We tested these strategies on a sparse bifurca-
tion and very sparse aneurysm geometry, and find that using weights
reduces calculation load imbalance by up to 85%, although the overall
communication overhead is higher than some of our runs.
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1 Introduction

The lattice-Boltzmann (LB) method is widely applied to model fluid flow, and
relies on a stream-collision scheme applied between neighbouring points on a
lattice. These local interactions allow LB implementations to be efficiently par-
allelized, and indeed numerous high performance LB codes exist today [10, 14].

Today’s parallel LB implementations are able to efficiently resolve large non-
sparse bulk flow systems (e.g., cuboids of fluid cells) using Petaflop supercomput-
ers [10, 12]. Efficiently modelling sparse systems on large core counts is still an
unsolved problem, primarily because it is difficult to obtain a good load balance
in calculation volume, neighbour count and communication volume for sparse
geometries on large core counts [13]. Additionally, the presence of wall sites,
inlets and outlets create a heterogeneity in the computational cost of different
lattice sites. Here we test two techniques for their potential to improve the load
balance in simulations using sparse geometries, and their performance in general.
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We perform this analysis building forth on existing advances. Indeed, several
LB codes already provide special decomposition techniques to more efficiently
model flow in sparse geometries. For example, Palabos [1], MUSUBI [14] and
WaLBerla [10] apply a block-wise decomposition strategy, while codes such as
HemeLB [13] and MUPHY [19] rely on third-party partitioning libraries such as
ParMETIS and PT Scotch.

Here we implement and test a weighted decomposition technique to try and
improve the parallel simulation performance of the HemeLB simulation environ-
ment for sparse geometries [16], by adding weights corresponding to the compu-
tational cost of lattice sites which do not represent bulk fluid sites. In addition,
we examine the effect of also pre-ordering the lattice via a space-filling curve
when applying this method.

Several other groups have investigated the use of weighted decomposition
in other areas, for example in environmental fluid mechanics [5]. In addition,
Catalyurek et al. [9] investigate adaptive repartitioning with Zoltan using weighted
graphs. Specifically, Axner et al. [4] applied a weighting technique to a lattice-
Boltzmann solver for sparse geometries. Whereas we apply weights to vertices,
they applied heavier weights to edges near in- and outlets, to ensure that these
regions would not be distributed across several processes.

2 HemeLB

HemeLB is a high performance parallel lattice-Boltzmann code for large scale
fluid flow in complex geometries. It is mainly written in C++. HemeLB sup-
ports a range of boundary conditions and collision operators [18] and features a
streaming visualization and steering client [17, 13]. In addition, we have equipped
HemeLB with a coupling interface, allowing it to be used as part of a multiscale
simulation [11]. HemeLB uses the coalesced communication design pattern to
manage its communications [8], and relies on non-blocking point-to-point MPI
send and receive calls to perform data movements during the simulation. We
present the improvement in performance of HemeLB over time in Fig. 1. We
obtained the performance data for this figure from a variety of sources (e.g.,
[16, 17, 13]). Overall, the peak performance of HemeLB has improved by more
than a factor 25 between 2007 and 2014, although we do now distinguish some
difference in peak performance between simulations with sparse geometries (e.g.,
aneurysm models) and those with non-sparse geometries (e.g., cylinders). Most
recently, we obtained a performance of 153 MSUPS using 49,152 cores on the
ARCHER supercomputer [2]. The geometry used in these runs was a cylinder
containing 230 million lattice sites.

HemeLB originally performs decomposition in two stages, making use of the
ParMETIS graph partitioning library [3] version 4.0.2. In the first stage it loads
the lattice arranged as blocks of 8 by 8 by 8 lattice sites. These blocks are dis-
tributed across the processes, favoring adjacent blocks when a process receives
multiple blocks [16]. After this initial decomposition, HemeLB then uses the
ParMETIS V3 PartKWay() function to optimize the decomposition, abandoning



Fig. 1. Overview of the obtained calculation performance (in billions of lattice site up-
dates per second as a function of the years in which the simulation runs were performed.
The runs were performed on a variety of supercomputers, each of which is briefly de-
scribed above or below the respective data points. The number of cores used is shown
by the size of the circle, ranging from 2,048 cores (smallest circles) to 49,152 cores
(largest circles). The fluid fraction is shown by the color of the circle. These include
very sparse simulation domains such as vascular networks (red circles), sparse domains
such as bifurcations (green circles), ranging to non-sparse domains such cylinders (blue
circles).

the original block-level structure [13]. This function relies on a K-way partition-
ing technique, which first shrinks the geometry to a minimally decomposable
size, then performs the decomposition, and then refines the geometry back to
its original size. One of the ways we can assess the quality of the decomposition
is by examining the edge cut, which is equal to the number of lattice neighbour
links that cross process boundaries.

3 Description of the optimizations

We have implemented and tested two optimizations in the decomposition.

3.1 Weighting

Within sparse geometries, lattice-Boltzmann codes generally adopt a range of
lattice site types to encapsulate all the functionalities required to treat flow in
bulk, near walls and near in- and outlets. We provide a simple example of a
geometry containing these lattice site types in Fig. 2. By default, all types of
lattice sites are weighted equally in HemeLB, which means that graph partition-
ers such as ParMETIS treat all site types with equal importance when creating



Fig. 2. 2D example of a sparse domain with the different types of lattice sites. In/outlets
are given by the blue bars and vessel walls by the red curves. Bulk sites are shown by
yellow dots, wall sites by green dots, wall in/outlet sites by red dots, and in/outlet
sites by blue dots.

a domain decomposition. However, we find that both sites adjacent to walls and
sites adjacent to in- and outlets require more computational time to be updated.
To optimize the load balance of the code, we therefore assign heavier weights to
sites which reside adjacent to wall or in/outlet boundaries.

We are currently developing an automated tuning implementation to obtain
these computational costs at run-time. However, as a first proof of concept,
we have deduced approximate weighting values by running six simulations of
cylinders with different aspect ratios. The shorter and wider cylinders have a
relatively high ratio of in- and outlet sites, while the longer and more narrow
cylinders have a relatively high ratio of wall sites. In addition, the cylinders with
an aspect ratio near 1:1 have a relatively high ratio of bulk flow sites.

Based on these runs we have obtained estimated values for the computational
cost for each type of lattice site, by using a least-square fitting function. We
present the values of these fits, as well as rounded values we use in ParMETIS,
in Table 1. ParMETIS supports using weights in graphs, provided that these
weights are given as integers. As we found that using large numbers for these
weights has a negative effect on the stability of ParMETIS, we chose to normalize
and round the weightings such that bulk sites are given a weight of 4, and the
other site types are given by values relative to that base value. Because the test
runs contained only a very small number of wall + in/outlet sites, we choose
to adopt the weighting for in/outlet sites also for the in/outlet sites which are
adjacent to a wall boundary.

3.2 Using a space-filling curve

A second, and more straightforward, optimization we have applied is by tak-
ing the Cartesian x,y and z coordinates of all lattice sites, and then sorting
them according to Morton-ordered space-filling curve. We do this prior to par-
titioning the simulation domain, and in doing so, we effectively eliminate any
bias introduced by the early stage decomposition scheme described in [16]. We
do this by replacing the ParMETIS V3 PartKWay() in the code function with a



Site type Obtained weight Rounded weight

Intel AMD

Bulk 10.0 10.0 4
Wall (BFL) 18.708 20.226 8
In/outlet 40.037 37.398 16
Wall and in/outlet 22.700* 34.577* 16

Table 1. Weight values as obtained from fitting against the runtimes of six test sim-
ulations on two compute architectures (Intel SandyBridge and AMD Interlagos). The
site type is given, followed by the weigh obtained from fitting the performance data
of the six runs, followed by the simplified integer value we adopted in ParMETIS. In
this work we use Bouzidi-Firdaouss-Lallemand (BFL) [7] wall conditions and in and
outlet conditions described in Nash et al. [18]. We observed rather erratic fits for the
weightings of in/outlet sites that are adjacent to walls, as these made up only a very
marginal fraction of the overall site counts in our benchmark runs (less than 1% in
most cases).

ParMETIS V3 PartGeomKWay() function. This optimization is functionally inde-
pendent from the weighted decomposition technique, but can lead to a better
decomposition result from ParMETIS when applied.

3.3 Other optimizations we have considered

After having inserted these optimizations, we have also tried improving the par-
tition by reducing the tolerance in ParMETIS. The amount of load imbalance
permitted within ParMETIS is indicated by the tolerance value, and a lower
value will increase the number of iterations ParMETIS will do to reach its final
state. Decreasing the tolerance from 1.001 to 1.00001 resulted for us in an in-
crease of the ParMETIS processing time while showing a negligible difference in
the quality of partitioning. As a result, we have chosen not to investigate this
optimization in this work.

4 Setup

In our performance tests we used two different simulation domains. These in-
clude a smaller bifurcation geometry and a larger aneurysm geometry (see Fig. 3
for both). The bifurcation simulation domain consists of 650492 lattice sites,
which occupy about 10% of the bounding box of the geometry. The aneurysm
simulation domain consists of 5667778 lattice sites, which occupy about 1.5% of
the bounding box of the geometry. We run our simulations using pressure in-
and outlets described in Nash et al. [18], the LBGK collision operator [6], the
D3Q19 advection model and Bouzidi-Firdaouss-Lallemand wall conditions [7].

For our benchmarks we use the HECToR Cray XT6 supercomputer at EPCC
in Edinburgh, and compile our code using the GCC compiler version 4.3.4. We
have run our simulations for 50000 time steps using 128 to 1024 cores for the



Fig. 3. Overview of the bifurcation geometry (left) and the aneurysm geometry (right)
used in our performance tests. The blue blob in the aneurysm geometry is a marker
indicating a region of specific interest to the user. The bifurcation geometry has a
sparsity of about 10% (i.e., the lattice sites occupy about 10% of the bounding box of
the geometry), and the aneurysm geometry a sparsity of about 1.5%.

bifurcation simulation domain, and 512 to 12288 cores for the aneurysm simu-
lation domain. We repeated the run for each core count five times and averaged
the results. We do this because the scheduler at HECToR does not necessar-
ily allocate processes within a single job to adjacent nodes; and as a result the
performance differs between runs. We have also performed several runs using
the aneurysm simulation domain on the ARCHER Cray XC30 supercomputer
at EPCC. These runs were performed with an otherwise identical configuration.
ARCHER relies on an Intel Ivy Bridge architecture and has a peak performance
of about 1.6 PFLOPs in total.

5 Results

We present our measurements of the total simulation time and the maximum
LB calculation time for the bifurcation simulation domain in Figure 4.

We find that both incorporating a space-filling curve and using weighted de-
composition results in a reduction of the simulation time. However, the use of a
space-filling curve does little to reduce the calculation load imbalance, whereas
enabling weighted decomposition results in a reduction of the calculation load
imbalance by up to 85%. We also examined the edge-cut returned by ParMETIS
during the domain decomposition stage. For each core count, the edge cut ob-
tained in all the runs was within a margin of 4.5%, with slightly higher edge cuts
for runs using a space-filling curve or weighted decomposition.

We present our measurements of the total simulation time and the maxi-
mum LB calculation time for the aneurysm simulation domain in Figure 5. Here
we find that applying weighted decomposition results in an increase of runtime
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Fig. 4. Total simulation time and maximum LB calculation time for the simulation
using the bifurcation model, run on HECToR. We performed measurements for the
non-optimized code, a code with only weighting enabled, a code with only the space-
filling curve enabled, and a code with both enabled. We provide lines to guide the eyes.
In the image on the left we plotted a linear scaling line using a thick gray dotted line.
In the image on the right we plotted the average LB calculation time of all our run
types using thin gray dotted lines.
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Fig. 5. Total simulation time and maximum LB calculation time for the simulation
of the aneurysm model, run on HECToR. See Fig: 4 for an explanation of the lines
and symbols. Here we only performed measurements for the non-optimized code, a
code with only the space-filling curve optimization enabled, and a code with both
optimizations enabled.

by ∼5% in most of our runs. Using the space-filling curve in addition to the
weighted decomposition results in a further increase in runtime, especially for
runs performed on 4096 and 8192 cores. However, the use of weighted decom-
position also results in a calculation load imbalance which is up to 65% lower
than that of the original simulation, while we again observe little difference here
between runs that use a space-filling curve and the runs without. When we ex-
amine the edge cut obtained by ParMETIS in different runs, we find that using
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Fig. 6. Total MPI communication time for the simulation of the bifurcation model
(left, from the run presented in Fig. 4) and the aneurysm model (right, from the run
presented in Fig. 5).

weighted decomposition results in a slightly lower edge cut (∼ 0.5%) and using
a space-filling curve results in an edge cut which is up to 5.3% higher.

To provide more insight into the cause of the increase in simulation time,
we present our measurements of the MPI communication overhead in these runs
in Fig. 6. Here the runs which use our optimization strategies take less time
to do MPI communication when applied to the bifurcation simulation domain,
and more time to do MPI communications when applied to the aneurysm do-
main. These differences match largely with the differences we observed in the
overall simulation time. Because the total time spent on MPI communications
is generally larger than the calculation time for high core counts, and the differ-
ences between the runs are considerable, the communication performance is a
major component of the overall simulation performance. However, the commu-
nication performance correlates only weakly with the edge cut values returned
by ParMETIS and therefore the total communication volume. For example, the
slightly lower edge cut for the aneurysm simulations with weighted decomposi-
tion is in contrast with the slightly higher communication overhead. This means
that the communication load imbalance is likely to be a major bottleneck in the
performance of our larger runs, and should be investigated more closely.

5.1 Performance Results on ARCHER

We have repeated the simulations using the aneurysm simulation domain on the
ARCHER supercomputer, both with and without using weighted decomposition.
We present the measured simulation and calculation times of these runs in Fig. 7,
and the MPI communication time in Fig. 8. In these runs, we obtained approxi-
mately three times the performance per core compared to HECToR. When using
weighted decomposition, the calculation load imbalance was reduced by up to
70%, the simulation time by approximately 2-12% and the MPI communication
time by approximately 5-20%. In particular, the reduction in communication
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Fig. 7. Total simulation time and maximum LB calculation time for the simulation of
the aneurysm model, as run on ARCHER. See Fig: 4 for an explanation of the lines
and symbols. Here we only performed measurements for the non-optimized code, and
a code with weighted decomposition enabled.
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Fig. 8. Total MPI communication time for the run presented in Fig. 7.

time contrasts with the measured increase in communication time, which we ob-
served in the HECToR runs. This difference could be attributed to the superior
network architecture of ARCHER, and/or the large memory per core, which
may have resulted in ParMETIS reaching a domain decomposition with better
communication load balance.

6 Discussion and conclusions

We presented an approach for weighted decomposition and assessed its effect
on the performance of the HemeLB bloodflow simulation environment. The use
of lattice weights in our decomposition scheme provides the strongest improve-
ment in calculation load balance, and delivers an improvement in the simulation
performance for the bifurcation geometry. However, the use of weighted decom-
position (both with and without the space-filling curve optimization) sometimes



results in a higher communication overhead of the aneurysm simulations, despite
negligible changes in the communication volume. Indeed, for these blood flow
simulations it appears that a low edge cut is only a minor factor in the overall
communication performance for sparse problems, even though graph partition-
ing libraries are frequently optimized to accomplish such a minimal edge cut.
This is in accordance with some earlier conclusions in the literature [15]. We
intend to more thoroughly investigate the communication load imbalance of our
larger runs. As part of preparing HemeLB for the exascale within the CRESTA
project, we are working with experts from the Deutschen Zentrums für Lucht
und Raumfahrt (DLR) to enable domain decompositions using PT-Scotch and
Zoltan. The use of these alternate graph partitioning libraries may result in fur-
ther performance improvements, especially if these libraries optimize not only for
a calculation load balance and a low edge cut, but also take into account other
communication characteristics. Furthermore, since we have observed differences
in site weights between different computer architectures, we are looking into an
”auto-tuning” function that automatically calculates the weights at runtime or
compilation time.
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