4 research outputs found

    TCT-294: Long-Term (Three Years) Follow-Up of the Patients with Multiple Sirolimus Eluting Stent Implantation (Full-metal Jacket Patients)

    Get PDF
    1. The cost, usability and power efficiency of available wildlife monitoring equipment currently inhibits full ground-level coverage of many natural systems. Developments over the last decade in technology, open science, and the sharing economy promise to bring global access to more versatile and more affordable monitoring tools, to improve coverage for conservation researchers and managers. 2. Here we describe the development and proof-of-concept of a low-cost, small-sized and low-energy acoustic detector: 'AudioMoth'. The device is open-source and programmable, with diverse applications for recording animal calls or human activity at sample rates of up to 384kHz. We briefly outline two ongoing real-world case studies of large-scale, long-term monitoring for biodiversity and exploitation of natural resources. These studies demonstrate the potential for AudioMoth to enable a substantial shift away from passive continuous recording by individual devices, towards smart detection by networks of devices flooding large and inaccessible ecosystems. 3. The case studies demonstrate one of the smart capabilities of AudioMoth, to trigger event logging on the basis of classification algorithms that identify specific acoustic events. An algorithm to trigger recordings of the New Forest cicada (Cicadetta montana) demonstrates the potential for AudioMoth to vastly improve the spatial and temporal coverage of surveys for the presence of cryptic animals. An algorithm for logging gunshot events has potential to identify a shotgun blast in tropical rainforest at distances of up to 500 m, extending to 1km with continuous recording. 4. AudioMoth is more energy efficient than currently available passive acoustic monitoring (PAM) devices, giving it considerably greater portability and longevity in the field with smaller batteries. At a build cost of ~US$43 per unit, AudioMoth has potential for varied applications in large-scale, long-term acoustic surveys. With continuing developments in smart, energy-efficient algorithms and diminishing component costs, we are approaching the milestone of local communities being able to afford to remotely monitor their own natural resources

    Data from: AudioMoth: evaluation of a smart open acoustic device for monitoring biodiversity and the environment

    No full text
    1. The cost, usability and power efficiency of available wildlife monitoring equipment currently inhibits full ground-level coverage of many natural systems. Developments over the last decade in technology, open science, and the sharing economy promise to bring global access to more versatile and more affordable monitoring tools, to improve coverage for conservation researchers and managers. 2. Here we describe the development and proof-of-concept of a low-cost, small-sized and low-energy acoustic detector: &#39;AudioMoth&#39;. The device is open-source and programmable, with diverse applications for recording animal calls or human activity at sample rates of up to 384kHz. We briefly outline two ongoing real-world case studies of large-scale, long-term monitoring for biodiversity and exploitation of natural resources. These studies demonstrate the potential for AudioMoth to enable a substantial shift away from passive continuous recording by individual devices, towards smart detection by networks of devices flooding large and inaccessible ecosystems. 3. The case studies demonstrate one of the smart capabilities of AudioMoth, to trigger event logging on the basis of classification algorithms that identify specific acoustic events. An algorithm to trigger recordings of the New Forest cicada (Cicadetta montana) demonstrates the potential for AudioMoth to vastly improve the spatial and temporal coverage of surveys for the presence of cryptic animals. An algorithm for logging gunshot events has potential to identify a shotgun blast in tropical rainforest at distances of up to 500 m, extending to 1km with continuous recording. 4. AudioMoth is more energy efficient than currently available passive acoustic monitoring (PAM) devices, giving it considerably greater portability and longevity in the field with smaller batteries. At a build cost of ~US$43 per unit, AudioMoth has potential for varied applications in large-scale, long-term acoustic surveys. With continuing developments in smart, energy-efficient algorithms and diminishing component costs, we are approaching the milestone of local communities being able to afford to remotely monitor their own natural resources.,Gunshot data from BelizeCSV file giving the logarithmic ratio between a gunshots max peak amplitude and a reference amplitude at varying distances and orientation from source. We used the maximum possible magnitude for a .WAV file recorded on the device as our reference.gunshot_data.csv,</span

    Optimization of sensor deployment for acoustic detection and localization in terrestrial environments

    No full text
    The rapid evolution in miniaturization, power efficiency and affordability of acoustic sensors, combined with new innovations in smart capability, are vastly expanding opportunities in ground-level monitoring for wildlife conservation at a regional scale using massive sensor grids. Optimal placement of environmental sensors and probabilistic localization of sources have previously been considered only in theory, and not tested for terrestrial acoustic sensors. Conservation applications conventionally model detection as a function of distance. We developed probabilistic algorithms for near-optimal placement of sensors, and for localization of the sound source as a function of spatial variation in sound pressure. We employed a principled-GIS tool for mapping soundscapes to test the methods on a tropical-forest case study using gunshot sensors. On hilly terrain, near-optimal placement halved the required number of sensors compared to a square grid. A test deployment of acoustic devices matched the predicted success in detecting gunshots, and traced them to their local area. The methods are applicable to a broad range of target sounds. They require only an empirical estimate of sound-detection probability in response to noise level, and a soundscape simulated from a topographic habitat map. These methods allow conservation biologists to plan cost-effective deployments for measuring target sounds, and to evaluate the impacts of sub-optimal sensor placements imposed by access or cost constraints, or multipurpose uses.</p

    Automated detection of gunshots in tropical forests using convolutional neural networks

    No full text
    Unsustainable hunting is one of the leading drivers of global biodiversity loss, yet very few direct measures exist due to the difficulty in monitoring this cryptic activity. Where guns are commonly used for hunting, such as in the tropical forests of the Americas and Africa, acoustic detection can potentially provide a solution to this monitoring challenge. The emergence of low cost autonomous recording units (ARUs) brings into reach the ability to monitor hunting pressure over wide spatial and temporal scales. However, ARUs produce immense amounts of data, and long term and large-scale monitoring is not possible without efficient automated sound classification techniques. We tested the effectiveness of a sequential two-stage detection pipeline for detecting gunshots from acoustic data collected in the tropical forests of Belize. The pipeline involved an on-board detection algorithm which was developed and tested in a prior study, followed by a spectrogram based convolutional neural network (CNN), which was developed in this manuscript. As gunshots are rare events, we focussed on developing a classification pipeline that maximises recall at the cost of increased false positives, with the aim of using the classifier to assist human annotation of files. We trained the CNN on annotated data collected across two study sites in Belize, comprising 597 gunshots and 28,195 background sounds. Predictions from the annotated validation dataset comprising 150 gunshots and 7044 background sounds collected from the same sites yielded a recall of 0.95 and precision of 0.85. The combined recall of the two-step pipeline was estimated at 0.80. We subsequently applied the CNN to an un-annotated dataset of over 160,000 files collected in a spatially distinct study site to test for generalisability and precision under a more realistic monitoring scenario. Our model was able to generalise to this dataset, and classified gunshots with 0.57 precision and estimated 80% recall, producing a substantially more manageable dataset for human verification. Using a classifier-guided listening approach such as ours can make wide scale monitoring of threats such as hunting a feasible option for conservation management
    corecore