110 research outputs found

    The impact of COVID-19 on epilepsy care: Perspectives from UK healthcare workers

    Get PDF
    The COVID-19 pandemic has created an immense pressure on healthcare providers, resulting in a shift to remote consultations and the redeployment of healthcare workers (HCWs). We present survey data from the United Kingdom (UK) HCWs to outline how changes in healthcare provision impact clinicians' wellbeing and ability to provide adequate care. We designed an online survey to gather the experiences of HCWs providing care to people with epilepsy. We received seventy-nine responses from UK-based HCWs, of whom 43% reported an impact on their mental health. Changes to service delivery have resulted in 71% of clinicians performing > 75% of their consultations remotely. Diagnosing and treating epilepsy has changed, with a fifth of respondents being significantly less confident in diagnosing epilepsy. Ultimately, these results show that COVID-19 has had an overall negative impact on HCWs and their ability to provide epilepsy care. These results must be considered when reorganizing health services to ensure optimal outcomes for people with epilepsy

    Laboratory capability and surveillance testing for Middle East respiratory syndrome coronavirus infection in the WHO European Region, June 2013

    Get PDF
    Since September 2012, over 90 cases of respiratory disease caused by a novel coronavirus, now named Middle East respiratory syndrome coronavirus (MERSCoV), have been reported in the Middle East and Europe. To ascertain the capabilities and testing experience of national reference laboratories across the World Health Organization (WHO) European Region to detect this virus, the European Centre for Disease Prevention and Control (ECDC) and the WHO Regional Office for Europe conducted a joint survey in November 2012 and a follow-up survey in June 2013. In 2013, 29 of 52 responding WHO European Region countries and 24 of 31 countries of the European Union/European Economic Area (EU/EEA) had laboratory capabilities to detect and confirm MERS-CoV cases, compared with 22 of 46 and 18 of 30 countries, respectively, in 2012. By June 2013, more than 2,300 patients had been tested in 23 countries in the WHO European Region with nine laboratory-confirmed MERS-CoV cases. These data indicate that the Region has developed significant capability to detect this emerging virus in accordance with WHO and ECDC guidance. However, not all countries had developed capabilities, and the needs to do so should be addressed. This includes enhancing collaborations between countries to ensure diagnostic capabilities for surveillance of MERS-CoV infections across the European Region.S

    Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February-June 2020

    Get PDF
    : The aims of this study were to characterize new SARS-CoV-2 genomes sampled all over Italy and to reconstruct the origin and the evolutionary dynamics in Italy and Europe between February and June 2020. The cluster analysis showed only small clusters including < 80 Italian isolates, while most of the Italian strains were intermixed in the whole tree. Pure Italian clusters were observed mainly after the lockdown and distancing measures were adopted. Lineage B and B.1 spread between late January and early February 2020, from China to Veneto and Lombardy, respectively. Lineage B.1.1 (20B) most probably evolved within Italy and spread from central to south Italian regions, and to European countries. The lineage B.1.1.1 (20D) developed most probably in other European countries entering Italy only in the second half of March and remained localized in Piedmont until June 2020. In conclusion, within the limitations of phylogeographical reconstruction, the estimated ancestral scenario suggests an important role of China and Italy in the widespread diffusion of the D614G variant in Europe in the early phase of the pandemic and more dispersed exchanges involving several European countries from the second half of March 2020

    SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal

    Get PDF
    Portuguese network for SARS-CoV-2 genomics (Consortium): Agostinho José S Lira, Aida M Sousa Fernandes, Alexandra Estrada, Alexandra Nunes, Alfredo Rodrigues, Ana Caldas, Ana Constança, Ana Margarida Henriques, Ana Miguel Matos, Ana Oliveira, Ana Paula Dias, Ana Pelerito, Ana Rita Couto, Anabela Vilares, António Albuquerque, Baltazar Nunes, Bruna R Gouveia, Carina de Fátima Rodrigues, Carla Feliciano, Carla Roque, Carlos Cardoso, Carlos Sousa, Cathy Paulino, Célia Rodrigues Bettencourt, Claudia C Branco, Cláudia Nunes Dos Santos, Conceição Godinho, Constantino P Caetano, Cristina Correia, Cristina Toscano, Cristina Veríssimo, Daniela Silva, Diana Patrícia Pinto da Silva, Eliana Costa, Elizabeth Pádua, Fátima Martins, Fátima Vale, Fernanda Vilarinho, Fernando Branca, Filomena Caldeira, Filomena Lacerda, Francisca Rocha, Graça Andrade, Helena Ribeiro, Helena Rodrigues, Herberto Jesus, Hugo Sousa, Idalina Ferreira, Inês Baldaque, Inês Costa, Inês Gomes, Inna Slobidnyk, Isabel Albergaria, Isabel Dias, Isabel Fernandes, Isabel Lopes de Carvalho, Ivone Água-Doce, Jácome Bruges Armas, Joana Ramos, João Carlos Sousa, João Costa, João Dias, João Rodrigues, João Sobral, Jorge Machado, Jorge Meneses, José Alves, José Vicente Constantino, Laura Brum, Leonor Silveira, Líbia Zé-Zé, Lidia Santos, Ludivina Freitas, Luís Silva, Luisa Mota-Vieira, Lurdes Lopes, Lurdes Monteiro, Márcia Faria, Margarida Farinha, Margarida Vaz, Maria Alice Pinto, Maria Ana Pessanha, Maria Beatriz Tomaz, Maria Calle Vellés, Maria da Graça Maciel de Soveral, Maria Helena Ramos, Maria Isabel Veiga, Maria João Gargate, Maria João Peres, Maria José Borrego, Maria Matos Figueiredo, Mariana Martins, Mariana Viana, Maurício Melim, Miguel Babarro Jorreto, Miguel Fevereiro, Miguel Pinheiro, Mónica Oleastro, Nair Seixas, Nelson Ventura, Nuno Verdasca, Olga Costa, Patrícia Barros, Patricia Fonseca, Patricia Miguel, Paula Bajanca-Lavado, Paula Branquinho, Paula Palminha, Paula Soares, Paula Valente, Paulo Leandro, Paulo Pereira, Pedro Cardoso, Pedro Pechirra, Pedro Ramos, Raquel Neves, Raquel Rocha, Raquel Rodrigues, Raquel Sabino, Regina Sá, Ricardo Filipe Romão Ferreira, Ricardo Rodrigues, Rita C Veloso, Rita Cordeiro, Rita Côrte-Real, Rita de Sousa, Rita Gralha, Rita Macedo, Rita Matos, Rita Rodrigues, Sandra Paulo, Sara Sousa, Sílvia Lopo, Sónia Marta Santos Magalhães, Sónia Rodrigues, Sónia Silva, Susana Ladeiro, Susana Martins, Susana Silva, Teresa Salvado, Tiago Luís, Valquíria Alves, Vera ManageiroBackground: Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration with more than 50 laboratories distributed nationwide. Methods: By applying recent phylodynamic models that allow integration of individual-based travel history, we reconstructed and characterized the spatio-temporal dynamics of SARS-CoV-2 introductions and early dissemination in Portugal. Results: We detected at least 277 independent SARS-CoV-2 introductions, mostly from European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland), which were consistent with the countries with the highest connectivity with Portugal. Although most introductions were estimated to have occurred during early March 2020, it is likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the first cases were confirmed. Conclusions: Here we conclude that the earlier implementation of measures could have minimized the number of introductions and subsequent virus expansion in Portugal. This study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.Plain language summary: Analysing SARS-CoV-2 genetic material and how it changes over time can help us understand how the virus spreads between countries and determine the impact of control measures. In this study, we investigated SARS-CoV-2 transmission and evolution in the early stages of the COVID-19 pandemic in Portugal. In particular, we reconstructed the routes and timeliness of viral introductions into the country and assessed the relative contribution of each introduction in terms of how the epidemic evolved over time. We detected at least 277 independent introductions, mostly from European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland), which were consistent with the countries with the highest connectivity with Portugal. This study reflects an unprecedented effort in the field of the infectious diseases in Portugal, highlighting the need for systematic and geographically-representative surveillance to aid public health efforts to control the virus.This study is co-funded by Fundação para a Ciência e Tecnologia and Agência de Investigação Clínica e Inovação Biomédica (234_596874175) on behalf of the Research 4 COVID-19 call. Some infrastructural resources used in this study come from the GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Por tugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio

    Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014

    Get PDF
    Two patients, returning to the Netherlands from pilgrimage in Medina and Mecca, Kingdom of Saudi Arabia, were diagnosed with Middle East respiratory syndrome coronavirus (MERS-CoV) infection in May 2014. The source and mode of transmission have not yet been determined. Hospital-acquired infection and community-acquired infection are both possible

    The chronic neuropsychiatric sequelae of COVID?19: The need for a prospective study of viral impact on brain functioning

    Get PDF
    IntroductionThe increasing evidence of SARS‐CoV‐2 impact on the central nervous system (CNS) raises key questions on its impact for risk of later life cognitive decline, Alzheimer's disease (AD), and other dementia.MethodsThe Alzheimer's Association and representatives from more than 30 countries—with technical guidance from the World Health Organization—have formed an international consortium to study the short‐and long‐term consequences of SARS‐CoV‐2 on the CNS—including the underlying biology that may contribute to AD and other dementias. This consortium will link teams from around the world covering more than 22 million COVID‐19 cases to enroll two groups of individuals including people with disease, to be evaluated for follow‐up evaluations at 6, 9, and 18 months, and people who are already enrolled in existing international research studies to add additional measures and markers of their underlying biology.ConclusionsThe increasing evidence and understanding of SARS‐CoV‐2's impact on the CNS raises key questions on the impact for risk of later life cognitive decline, AD, and other dementia. This program of studies aims to better understand the long‐term consequences that may impact the brain, cognition, and functioning—including the underlying biology that may contribute to AD and other dementias

    Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study

    Get PDF
    Background: The risk of severe COVID-19 if an individual becomes infected is known to be higher in older individuals and those with underlying health conditions. Understanding the number of individuals at increased risk of severe COVID-19 and how this varies between countries should inform the design of possible strategies to shield or vaccinate those at highest risk. / Methods: We estimated the number of individuals at increased risk of severe disease (defined as those with at least one condition listed as “at increased risk of severe COVID-19” in current guidelines) by age (5-year age groups), sex, and country for 188 countries using prevalence data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 and UN population estimates for 2020. The list of underlying conditions relevant to COVID-19 was determined by mapping the conditions listed in GBD 2017 to those listed in guidelines published by WHO and public health agencies in the UK and the USA. We analysed data from two large multimorbidity studies to determine appropriate adjustment factors for clustering and multimorbidity. To help interpretation of the degree of risk among those at increased risk, we also estimated the number of individuals at high risk (defined as those that would require hospital admission if infected) using age-specific infection–hospitalisation ratios for COVID-19 estimated for mainland China and making adjustments to reflect country-specific differences in the prevalence of underlying conditions and frailty. We assumed males were twice at likely as females to be at high risk. We also calculated the number of individuals without an underlying condition that could be considered at increased risk because of their age, using minimum ages from 50 to 70 years. We generated uncertainty intervals (UIs) for our estimates by running low and high scenarios using the lower and upper 95% confidence limits for country population size, disease prevalences, multimorbidity fractions, and infection–hospitalisation ratios, and plausible low and high estimates for the degree of clustering, informed by multimorbidity studies. / Findings: We estimated that 1·7 billion (UI 1·0–2·4) people, comprising 22% (UI 15–28) of the global population, have at least one underlying condition that puts them at increased risk of severe COVID-19 if infected (ranging from 66% of those aged 70 years or older). We estimated that 349 million (186–787) people (4% [3–9] of the global population) are at high risk of severe COVID-19 and would require hospital admission if infected (ranging from <1% of those younger than 20 years to approximately 20% of those aged 70 years or older). We estimated 6% (3–12) of males to be at high risk compared with 3% (2–7) of females. The share of the population at increased risk was highest in countries with older populations, African countries with high HIV/AIDS prevalence, and small island nations with high diabetes prevalence. Estimates of the number of individuals at increased risk were most sensitive to the prevalence of chronic kidney disease, diabetes, cardiovascular disease, and chronic respiratory disease. / Interpretation: About one in five individuals worldwide could be at increased risk of severe COVID-19, should they become infected, due to underlying health conditions, but this risk varies considerably by age. Our estimates are uncertain, and focus on underlying conditions rather than other risk factors such as ethnicity, socioeconomic deprivation, and obesity, but provide a starting point for considering the number of individuals that might need to be shielded or vaccinated as the global pandemic unfolds

    Middle East respiratory syndrome

    Get PDF
    The Middle East respiratory syndrome is caused by a coronavirus that was first identified in Saudi Arabia in 2012. Periodic outbreaks continue to occur in the Middle East and elsewhere. This report provides the latest information on MERS

    Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial

    Get PDF
    BACKGROUND: Few data exist on the comparative safety and immunogenicity of different COVID-19 vaccines given as a third (booster) dose. To generate data to optimise selection of booster vaccines, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT). METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of third dose booster vaccination against COVID-19. Participants were aged older than 30 years, and were at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary COVID-19 immunisation course, with no history of laboratory-confirmed SARS-CoV-2 infection. 18 sites were split into three groups (A, B, and C). Within each site group (A, B, or C), participants were randomly assigned to an experimental vaccine or control. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY) control (1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26.COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or MenACWY (1:1:1:1). Participants and all investigatory staff were blinded to treatment allocation. Coprimary outcomes were safety and reactogenicity and immunogenicity of anti-spike IgG measured by ELISA. The primary analysis for immunogenicity was on a modified intention-to-treat basis; safety and reactogenicity were assessed in the intention-to-treat population. Secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ISRCTN, number 73765130. FINDINGS: Between June 1 and June 30, 2021, 3498 people were screened. 2878 participants met eligibility criteria and received COVID-19 vaccine or control. The median ages of ChAd/ChAd-primed participants were 53 years (IQR 44-61) in the younger age group and 76 years (73-78) in the older age group. In the BNT/BNT-primed participants, the median ages were 51 years (41-59) in the younger age group and 78 years (75-82) in the older age group. In the ChAd/ChAD-primed group, 676 (46·7%) participants were female and 1380 (95·4%) were White, and in the BNT/BNT-primed group 770 (53·6%) participants were female and 1321 (91·9%) were White. Three vaccines showed overall increased reactogenicity: m1273 after ChAd/ChAd or BNT/BNT; and ChAd and Ad26 after BNT/BNT. For ChAd/ChAd-primed individuals, spike IgG geometric mean ratios (GMRs) between study vaccines and controls ranged from 1·8 (99% CI 1·5-2·3) in the half VLA group to 32·3 (24·8-42·0) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·1 (95% CI 0·7-1·6) for ChAd to 3·6 (2·4-5·5) for m1273. For BNT/BNT-primed individuals, spike IgG GMRs ranged from 1·3 (99% CI 1·0-1·5) in the half VLA group to 11·5 (9·4-14·1) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·0 (95% CI 0·7-1·6) for half VLA to 4·7 (3·1-7·1) for m1273. The results were similar between those aged 30-69 years and those aged 70 years and older. Fatigue and pain were the most common solicited local and systemic adverse events, experienced more in people aged 30-69 years than those aged 70 years or older. Serious adverse events were uncommon, similar in active vaccine and control groups. In total, there were 24 serious adverse events: five in the control group (two in control group A, three in control group B, and zero in control group C), two in Ad26, five in VLA, one in VLA-half, one in BNT, two in BNT-half, two in ChAd, one in CVn, two in NVX, two in NVX-half, and one in m1273. INTERPRETATION: All study vaccines boosted antibody and neutralising responses after ChAd/ChAd initial course and all except one after BNT/BNT, with no safety concerns. Substantial differences in humoral and cellular responses, and vaccine availability will influence policy choices for booster vaccination. FUNDING: UK Vaccine Taskforce and National Institute for Health Research
    corecore