731 research outputs found
A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach
Many hydrological models including root water uptake (RWU) do not consider the dimension of root system hydraulic architecture (HA) because explicitly solving water flow in such a complex system is too time consuming. However, they might lack process understanding when basing RWU and plant water stress predictions on functions of variables such as the root length density distribution. On the basis of analytical solutions of water flow in a simple HA, we developed an "implicit" model of the root system HA for simulation of RWU distribution (sink term of Richards' equation) and plant water stress in three-dimensional soil water flow models. The new model has three macroscopic parameters defined at the soil element scale, or at the plant scale, rather than for each segment of the root system architecture: the standard sink fraction distribution <b><i>SSF</i></b>, the root system equivalent conductance <i>K</i><sub>rs</sub> and the compensatory RWU conductance <i>K</i><sub>comp</sub>. It clearly decouples the process of water stress from compensatory RWU, and its structure is appropriate for hydraulic lift simulation. As compared to a model explicitly solving water flow in a realistic maize root system HA, the implicit model showed to be accurate for predicting RWU distribution and plant collar water potential, with one single set of parameters, in dissimilar water dynamics scenarios. For these scenarios, the computing time of the implicit model was a factor 28 to 214 shorter than that of the explicit one. We also provide a new expression for the effective soil water potential sensed by plants in soils with a heterogeneous water potential distribution, which emerged from the implicit model equations. With the proposed implicit model of the root system HA, new concepts are brought which open avenues towards simple and mechanistic RWU models and water stress functions operational for field scale water dynamics simulation
Hierarchical Set Decision Diagrams and Regular Models
This paper presents algorithms and data structures that exploit a compositional and hierarchical specification to enable more efficient symbolic model-checking. We encode the state space and transition relation using hierarchical Set Decision Diagrams (SDD) [9]. In SDD, arcs of the structure are labeled with sets, themselves stored as SDD.
To exploit the hierarchy of SDD, a structured model representation is needed. We thus introduce a formalism integrating a simple notion of type and instance. Complex composite behaviors are obtained using a synchronization mechanism borrowed from process calculi. Using this relatively general framework, we investigate how to capture similarities in regular and concurrent models. Experimental results are presented, showing that this approach can outperform in time and memory previous work in this area
Infection levels and species diversity of ascaridoid nematodes in Atlantic cod, Gadus morhua, are correlated with geographic area and fish size
Atlantic cod (Gadus morhua) is among the most important commercial fish species on the world market. Its
infection by ascaridoid nematodes has long been known, Pseudoterranova even being named cod worm. In the
present study, 755 individuals were sampled in the Barents, Baltic and North Seas during 2012–2014.
Prevalences for Anisakis in whole fish and in fillets in the different fishing areas varied from 16 to 100% and
from 12 to 90% respectively. Abundance was also greatly influenced by the sampling area. Generalized additive
model results indicate higher numbers of Anisakis in the North Sea, even after the larger body size was accounted
for. Numbers and prevalence of Anisakis were positively related to fish length or weight. The prevalence of
parasites in whole fish and in fillets was also influenced by the season, with the spring displaying a peak for the
prevalence in whole fish and, at the same time, a drop for the prevalence in fillets. Whereas 46% of cod had
Anisakis larvae in their fillets, the majority (39%) had parasites mainly in the ventral part of the fillet and only
12% had parasites in their dorsal part. This observation is of importance for the processing of the fish. Indeed,
the trimming of the ventral part of the cod fillet would allow the almost total elimination of ascaridoids except
for cod from the Baltic Sea where there was no difference between the dorsal and the ventral part.
The presence of other ascaridoid genera was also noticeable in some areas. For Pseudoterranova, the highest
prevalence (45%) in whole fish was observed in the Northern North Sea, whereas the other areas had prevalences between 3 and 16%. Contracaecum was present in every commercial size cod sampled in the Baltic Sea
with an intensity of up to 96 worms but no Contracaecum was isolated from the Central North Sea. Non-zoonotic
Hysterothylacium was absent from the Baltic Sea but with a prevalence of 83% in the Barents and the Northern
North Sea.
A subsample of worms was identified with genetic-molecular tools and assigned to the species A. simplex (s.s.),
A. pegreffii, P. decipiens (s.s.), P. krabbei, C. osculatum and H. aduncum. In addition to high prevalence and
abundance values, the cod sampled in this study presented a diversity of ascaridoid nematodes with a majority of
fish displaying a co-infection. Out of 295 whole infected fish, 269 were co-infected by at least 2 genera
The signature of 44Ti in Cassiopeia A revealed by IBIS/ISGRI on INTEGRAL
We report the detection of both the 67.9 and 78.4 keV 44Sc gamma-ray lines in
Cassiopeia A with the INTEGRAL IBIS/ISGRI instrument. Besides the robustness
provided by spectro-imaging observations, the main improvements compared to
previous measurements are a clear separation of the two 44Sc lines together
with an improved significance of the detection of the hard X-ray continuum up
to 100 keV. These allow us to refine the determination of the 44Ti yield and to
constrain the nature of the nonthermal continuum emission. By combining
COMPTEL, BeppoSAX/PDS and ISGRI measurements, we find a line flux of (2.5 +/-
0.3)*10(-5) cm(-2) s(-1) leading to a synthesized 44Ti mass of 1.6
(+0.6-0.3)*10(-4) solar mass. This high value suggests that Cas A is peculiar
in comparison to other young supernova remnants, from which so far no line
emission from 44Ti decay has been unambiguously detected.Comment: 5 pages, 4 figures, Accepted for publication in ApJ
Efficient Emptiness Check for Timed B\"uchi Automata (Extended version)
The B\"uchi non-emptiness problem for timed automata refers to deciding if a
given automaton has an infinite non-Zeno run satisfying the B\"uchi accepting
condition. The standard solution to this problem involves adding an auxiliary
clock to take care of the non-Zenoness. In this paper, it is shown that this
simple transformation may sometimes result in an exponential blowup. A
construction avoiding this blowup is proposed. It is also shown that in many
cases, non-Zenoness can be ascertained without extra construction. An
on-the-fly algorithm for the non-emptiness problem, using non-Zenoness
construction only when required, is proposed. Experiments carried out with a
prototype implementation of the algorithm are reported.Comment: Published in the Special Issue on Computer Aided Verification - CAV
2010; Formal Methods in System Design, 201
On finitely ambiguous B\"uchi automata
Unambiguous B\"uchi automata, i.e. B\"uchi automata allowing only one
accepting run per word, are a useful restriction of B\"uchi automata that is
well-suited for probabilistic model-checking. In this paper we propose a more
permissive variant, namely finitely ambiguous B\"uchi automata, a
generalisation where each word has at most accepting runs, for some fixed
. We adapt existing notions and results concerning finite and bounded
ambiguity of finite automata to the setting of -languages and present a
translation from arbitrary nondeterministic B\"uchi automata with states to
finitely ambiguous automata with at most states and at most accepting
runs per word
An incremental modular technique for checking LTL-X properties on Petri nets
Model-checking is a powerful and widespread technique for the verification of finite state concurrent systems. However, the main hindrance for wider application of this technique is the well-known state explosion problem. Modular verification is a promising natural approach to tackle this problem. It is based on the "divide and conquer" principle and aims at deducing the properties of the system from those of its components analysed in isolation. Unfortunately, several issues make the use of modular verification techniques difficult in practice. First, deciding how to partition the system into components is not trivial and can have a significant impact on the resources needed for verification. Second, when model-checking a component in isolation, how should the environment of this component be described? In this paper, we address these problems in the framework of model-checking LTL\X action-based properties on Petri nets. We propose an incremental and modular verification approach where the system model is partitioned according to the actions occurring in the property to be verified and where the environment of a component is taken into account using the linear place invariants of the system
Variations of the McEliece Cryptosystem
Two variations of the McEliece cryptosystem are presented. The first one is
based on a relaxation of the column permutation in the classical McEliece
scrambling process. This is done in such a way that the Hamming weight of the
error, added in the encryption process, can be controlled so that efficient
decryption remains possible. The second variation is based on the use of
spatially coupled moderate-density parity-check codes as secret codes. These
codes are known for their excellent error-correction performance and allow for
a relatively low key size in the cryptosystem. For both variants the security
with respect to known attacks is discussed
Heterotopic pancreatitis causing confusion in small bowel tumor.
A 39-year-old man was admitted to our hospital for acute epigastric pain with nausea and vomiting. Physical examination was suggestive for acute abdomen without peritoneal irritation findings. Blood tests results were as follow: alanine aminotransferase (ALT): 87 U/L, aspartate aminotransferase (AST): 55 U/L, amylase: 135 U/L, lipase: 69 U/L, total bilirubin: 11,6 mg/l, creatinine: 9 mg/l, C-reactive protein (CRP): 108,4 mg/L, and white blood cells (WBC): 14640/mm
- …