20 research outputs found

    Monitoring of post-match fatigue in professional soccer: Welcome to the real world

    Get PDF
    Participation in soccer match-play leads to acute and transient subjective, biochemical, metabolic and physical disturbances in players over subsequent hours and days. Inadequate time for rest and regeneration between matches can expose players to the risk of training and competing whilst not entirely recovered. In professional soccer, contemporary competitive schedules can require teams to compete in-excess of 60 matches over the course of the season while periods of fixture congestion occur prompting much attention from researchers and practitioners to the monitoring of fatigue and readiness to play. A comprehensive body of research has investigated post-match acute and residual fatigue responses. Yet the relevance of the research for professional soccer contexts is debatable notably in relation to the study populations and designs employed. Monitoring can indeed be invasive, expensive, time-inefficient and difficult to perform routinely and simultaneously in a large squad of regularly competing players. Uncertainty also exists regarding the meaningfulness and interpretation of changes in fatigue response values and their functional relevance, and practical applicability in the field. The real-world need and cost-benefit of monitoring must be carefully weighed up. In relation to professional soccer contexts, this opinion paper intends to: 1) debate the need for PMF monitoring, 2) critique the real-world relevance of the current research literature, 3) discuss the practical burden relating to measurement tools and protocols and the collection, interpretation and application of data in the field, and, 4) propose future research perspectives

    Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK: prospective, cohort study

    Get PDF
    Background Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. Methods We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. Findings Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. Interpretation Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses

    Field-Based Physiological Testing of Wheelchair Athletes

    No full text
    This article is closed access.The volume of literature on field-based physiological testing of wheelchair sports, such as basketball, rugby and tennis, is considerably smaller when compared with that available for individuals and team athletes in able-bodied (AB) sports. In analogy to the AB literature, it is recognized that performance in wheelchair sports not only relies on fitness, but also sport-specific skills, experience and technical proficiency. However, in contrast to AB sports, two major components contribute towards ‘wheeled sports’ performance, which are the athlete and the wheelchair. It is the interaction of these two that enable wheelchair propulsion and the sporting movements required within a given sport. Like any other athlete, participants of wheelchair sports are looking for efficient ways to train and/or analyse their technique and fitness to improve their performance. Consequently, laboratory and/or field-based physiological monitoring tools used at regular intervals at key time points throughout the year must be considered to help with training evaluation. The present review examines methods available in the literature to assess wheelchair sports fitness in a field-based environment, with special attention on outcome variables, validity and reliability issues, and non-physiological influences on performance. It also lays out the context of field-based testing by providing details about the Paralympic court sports and the impacts of a disability on sporting performance. Due to the limited availability of specialized equipment for testing wheelchair-dependent participants in the laboratory, the adoption of field-based testing has become the preferred option by team coaches of wheelchair athletes. An obvious advantage of field-based testing is that large groups of athletes can be tested in less time. Furthermore, athletes are tested in their natural environment (using their normal sports wheelchair set-up and floor surface), potentially making the results of such testing more relevant than laboratory testing. However, given that many tests, such as the multistage fitness test and the Yo-Yo intermittent test, have originally been developed for AB games players, the assumption that these can also be used for wheelchair athletes may be erroneous. With the array of AB aerobic and anaerobic field tests available, it is difficult to ascertain which ones may be best suited for wheelchair athletes. Therefore, new, wheelchair sport-specific tests have been proposed and validated. Careful selection of tests to enable coaches to distinguish between disability classifications, wheelchair proficiency and actual performance improvements is paramount as this will not only enhance the value of field-based testing, but also help with the development of meaningful normative data

    Immunoallergic Manifestations of Human Protozoan and Helminth Diseases

    No full text
    corecore