85 research outputs found
Outline of research on oscillating boundary layers
The state of the art in the field of unsteady boundary layers is outlined with emphasis on turbulent boundary layers. The unsteady flows considered are mainly periodic with the external velocity varying around a zero or nonzero mean time value. The principal results obtained on laminar boundary layers are also presented
First results of a study on turbulent boundary layers in oscillating flow with a mean adverse pressure gradient
The development of a turbulent unsteady boundary layer with a mean pressure gradient strong enough to induce separation, in order to complete the extend results obtained for the flat plate configuration is presented. The longitudinal component of the velocity is measured using constant temperature hot wire anemometer. The region where negative velocities exist is investigated with a laser Doppler velocimeter system with BRAGG cells. The boundary layer responds by forced pulsation to the perturbation of potential flow. The unsteady effects observed are very important. The average location of the zero skin friction point moves periodically at the perturbation frequency. Average velocity profiles from different instants in the cycle are compared. The existence of a logarithmic region enables a simple calculation of the maximum phase shift of the velocity in the boundary layer. An attempt of calculation by an integral method of boundary layer development is presented, up to the point where reverse flow starts appearing
Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer
A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer
Characterization of the pressure fluctuations within a Controlled-Diffusion airfoil boundary layer at large Reynolds numbers
The present investigation targets the generation of airfoil trailing-edge broadband noise that arises from the interaction of turbulent boundary layer with the airfoil trailing edge. Large-eddy simulations, carried out using a massively parallel compressible solver CharLESX, are conducted for a Controlled-Diffusion (CD) airfoil with rounded trailing edge for seven configurations, characterized with a Reynolds number, angle of attack and Mach number. An analysis of the unsteady pressure signals in the boundary layer is proposed in regard to classical trailing edge noise modelling ingredients
Emerging Synergisms Between Drugs and Physiologically-Patterned Weak Magnetic Fields: Implications for Neuropharmacology and the Human Population in the Twenty-First Century
Synergisms between pharmacological agents and endogenous neurotransmitters are familiar and frequent. The present review describes the experimental evidence for interactions between neuropharmacological compounds and the classes of weak magnetic fields that might be encountered in our daily environments. Whereas drugs mediate their effects through specific spatial (molecular) structures, magnetic fields mediate their effects through specific temporal patterns. Very weak (microT range) physiologically-patterned magnetic fields synergistically interact with drugs to strongly potentiate effects that have classically involved opiate, cholinergic, dopaminergic, serotonergic, and nitric oxide pathways. The combinations of the appropriately patterned magnetic fields and specific drugs can evoke changes that are several times larger than those evoked by the drugs alone. These novel synergisms provide a challenge for a future within an electromagnetic, technological world. They may also reveal fundamental, common physical mechanisms by which magnetic fields and chemical reactions affect the organism from the level of fundamental particles to the entire living system
Calcul des écoulements pariétaux : modèles de turbulence et méthodes numériques
Différents aspects du calcul des écoulements turbulents pariétaux sont présentés. En particulier, les approches récentes de représentation pratique des effets de la turbulence sont discutées. Différents modèles de calcul appliqués en aérodynamique sont également discutés
Quelques aspects de la réduction de traînée
On présente quelques techniques étudiées actuellement pour réduire la traînée de frottement. Une première classe de techniques repose sur le maintien du régime laminaire. Une seconde classe repose sur l'utilisation de manipulateurs de couche limite: insertion dans la couche limite de lamelles ou de profils parallèlement à la paroi (LEBU), parois rainurées (riblets)
- …