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OUTLINE OF RESEARCH ON OSCILLATING BOUNDARY LAYERS

J. Cousteix
National Office of Aerospace Study and Research

(ONERA), CERT, Toulouse, France

1. Introduction

Very diverse motives associated with the subjects of research 	 /l

and application in fields, such as aerodynamics, hydrodynamics, b io-

mechanics, meteorology and oceanography, have stimulated study of un-

steady flows.

We are particularly interested in the behavior of turbulent unsteady

boundary layers in aeronautics, especially in helicopter and jet engine

;p roblems. The turbulence parameter is of fundamental interest in this

limited field of unsteady aerodynamics. In fact, it appears that the

analysis of unsteady flows can contribute in t eresting data for model-

ing and calculation of turbulent flows.

The moat common unsteady flows are periodic and, quite naturally,

they are associated with the basic case of oscillatory flow. We review

recent work on this question, limited to that on the boundary layer.

Other fundamental subjects, such as wakes, gets and flows in ducts, are

being studied in several laboratories and also are very important, but

they are set aside from this review.

Except for the work of Karlsson, it can be said that the development

of calculation methods preceded that of experiments. This is partially

explained by the necessity of having available means of acquisition of

numerical data, while most of the means used so far have been analogic,

this need being connected with the need of special statistical analysis

of experimental data. Several experiments actually have been conducted,

others are in progress, and they permit specification of the description

of unsteady effects. They also permit a little broader discussion of

the validity of available calculation methods.

*Numbers in the margin indicate pagination in the foreign text.
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Before describing those studies, we think it useful to recall come

results on laminar boundary layers, which assist in understanding some

aspects of the un teadiness of the flow,

2. Laminar Flow

While the equations of unsteady laminary boundary Layers are known

with great certainty, the understanding and analysis of some questions

have only recently been elucidated, in particular, by the use of asymp-

totic expansion methods.

The best known flows are oscillating flows, in which the average

velocity can be zero or nonzero. Before describing the main results for

these; flows, it is advisable to stress some precautions to be taken,

before using the classical boundary layer equations.

2.1. Boundary Layer Equations (Incompressible)

The Navier-Stokes equations quite clearly are the fundamental

equations. In everything which follows, we are intested mainly in in-

compressible flows, and this restriction implies conditions [Lighthill,

43, 441. In isothermal. flow, the two principal conditions are: 1. Mach

number a little :Less than one; 2. the acoustical wavelength associated

with characteristic frequency w should be large, with respect to char-

acteristic dimension L of the system. With v as the characteristic

velocity and c, the speed of sound, these conditions are described by

V/ c << .4	 WL/ e. .<, 4.

In this case, the fundamental equations are:

0	 (1)

Luc	 ^^. au^: ` _ ^ a 'P	 ., a' UZ	 (2)
aE	 J axd	 P a xe	 axe
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Discussion of the validity of the cl assical boundary layer equa- 	/2

tions, namely,

^^. t^ c^	 (3)
a.X	 a^

at	 ^^ ^^" ^? ^x ^ Sys

a	

- 
O	

C1	

( 5)

often brings numerous parameters into play in the unsteady case. We

illustrate this with the simple case of a body of characteristic dimen-

sion L, located in a fluid oscillating at frequency w. U 0 is a typical

magnitude of the amplitude of the velocity variation, and we shall see

that the order of magnitude of the thickness of the viscous layer is

(v/w) l/2 . It uses a system of axes connected to the wall, and it in-

troduces the follc4ing dimensionless quantities:

`f	 (I/a')	 T= wt	 X= x/L

U	 V t(wel.Pv. T.-t/eWO.L

Disregarding all effects of curvature, the two dimensional Navier-

Stokes equations become

aU ay p	 (6)
aX

t 
ay Z

aU	 U1	 (u,-, U"E ^-
COL
	 OX By aX *	 aX̂ + ays

(7)

by 	 U. (U ly
v 

ay 
^ . 

WC n	 a aiv azv
TE t w4. l	 tic t any J " T iy +wct axt^ayt	(8) 

It then is clear that the solution of the problem brings into play

two parameters: the Strouhal number wL/U 0 
and the frequency parameter

wL 2 /v	 In particular, it is noted that, if wL 2A is not large enough,

a 
2 
U	 term (Eq. 7) can be nonnegligible, and the classical boundary

axe

layer equations are no longer applicable.
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In same cases, only longitudinal length L is not sufficient to

characterize	 the problem. For example, if the flow is perturbed by

a progressive wave, the phase velocity of which is Q, it is seen that

diseuusion of the validity of the boundary layer equations brJ,ngs in the

ratio of the wavelength Q/w to the thickness 6 of the boundary layer.

Therefore, by means of these examples, it is seen that the Reynolds

number is not, as it often is the steady state case, the determining

parameter, and that each problem requires detailed determination of the

orders of magnitude of the various terms which appear in the equations.

2.2. Oscillation with Zero Average Flow

2.2.1. Stokes Solution

The simplest case of an unsteady boundary layer is that of a

parallel flow (v = 0) oscillating around an average zero. Besides, it

concerns an exact solution of the Navier-Stokes equations, which is

reduced simply to

^^1	 (9)

With the conditions at the limits,

U - p	 y . o
0-	 ue, uA r- cos w^ 	 0,0

The solution found, as a function of reduced variable 
ti	 1/2y=y(w/2v)	 ,

is written

N

U	 COs "I	 ^ ^ Cos
4 

e.	
o

or 	 uA cos ( w^ +

ua,
All

with 
	

Cos	
e c^ )

r el AirtN^

N
A_el cos ^

(10)
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parallel flow

bu	 du* . V b
bt	 bt ay:

n U y^'
2v

U a Au cns(wt , w)

0
	

45_,r_y(-)

6, = 5 Yl^ X/U

The reduced amplitude U l/U lu, and phase ^ profiles are presented in

Fig. 1. An excess of amplitude in the boundary layer, with respect to

the exterior, is noted. A large phase shift also is noted near the wall.

At y = 0 0 the limiting velocity, i.e., also friction, is before fr/u.

U. _: AU'Coswt

^ ' lJJT!Tl̂ rr. ^ Ti ^f

AU, s ((e." Sinn)= .. (1.. e-"cosn);P
Au,

10^	 eAsInn
1 ' . e-4 coS n

0	 •-s- Au/Au. 1

b" a 5 2Y/w

b9 	 C
U112	 t s wX

wX^	 U

Practically, it can be 	 /3

considered that the thickness

of the Stoke,) layer, is on the

order of 5 ( 2v/W ) 1/2 . When the

frequency increases, the unsteady

effects due to viscosity are con-

fined to a thinner and thinner

layer.

This problem can be consider-

ed in a slightly different manner,

by finding the perturbation pro-

duced by an infinite oscillating

plate in a flow at rest. Then,

the conditions at the limit are

U	 CAS, WE	 0

and the so

Fig. 1. Stokes problem.

U'P

Thus, the oscillation of the plate creates a

vanishes at infinity, the phase velocity of which

Lution is written
N

e-- Cos(W^..

wave in the flow which

is ( 2aN, 
) 1/2 .

2.2.2. Secondary Flow Induced by Oscillating Movement (Stead
Streaming)

When a body oscillates around a fixed position in a fluid at rest,

it creates a secondary, stationary flow.

Stuart has studied this problem in a reference system connected to

the wall. The external velocity is in the form

5



	

U0. =	 1 
IO(T-) 

r Epi 4W4 ^wbW^ /

The shear layer which develops at the wall is analogous to a Stokes

layer, and it can be studied by means of the following reduced variables

	

U : U', V	 TL	 ^-- ^ (IV /W '

( tv/w) v,.j (^ is the current function) .

If wL 2/v is large, the solution is calculated by means of the

classical boundary layer equations,

The dimensionless equations bring out the Strouhal number S=WL/v

and, if this number is very large, the solution is found, by means of

an expansion, as a function of the powers of its inverse a=S -1 [43, 44]:

	

s i	
Z~	 2	 i]

	
(11)

In the U order, the solution is classical. It is that of Stokes:

1*6 70 	 (12)
f

In order a, the solution is more noteworthy, for stationary

component Xs is not zero:

a^9 _ Ya ") 1- 4 .p i 

^Y 

2 f +i ^' ~ ^Q IpL`1
(13)

	

J	 ^

 ka Sim

	

a	 td	 00

This secondary stationary movement is induced by nonlinear effects,

due to the convection terms of the equation of motion.

In order a, these terms bring out quadratic quantities, such as

sin 2wt, the time average of which is not zero and which necessarily gives

rise to a stationary velocity.

G
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It is noted that the velocity induced at the boundary of the S tokeo

layer (4w) io nonzero. It io

Vs 
° ~ Gw 

VC. 
f!e
	 ( 13 1)

Thus, the problem iz to determine how

zero on the exterior of the Stokes layer.

according to the order of magnitude of the

Reynolds number is made up of the order of

formula 13 1 , U sti UO 2A L and of the characte

the average velocity becomes

Two cases are dist inguished,
Reynolds number 130 =U0

2
/wv (this

magnitude of Us given by

ristic length L).

If Rs» l (Fig. 2), a boundary layer, in the very classical sense

of the term, develops below the Stokes layer, and its thickness 6 s is

on the order of L /Q 
s 
1/2=L (wv ) 1/2/Uw. The ratio of 6 s to thickness

agti(v/w) 1/2 of the Stokes layer is on the order of L(wv)v2/(v /w) l/2
= wL/UC0 =S. It is very much greater than 1. If Rs tl°°is on the order
of l or less than 1, the external layer is of a different nature. It

should be studied, by using the linear Stokes equations of slow move -

mont .

2.3. Oscillation with Nonzero
Average Flow.

bi :u When the boundary layer

bs :1 l !^ ^^i^	 develops in the presence of an
M

external flow oscillating around

a..
an average nonzero U O , two solu-

Ntions play a fundamental part:
the Blasius solution and the Stokes

solution (Fig. 3). If the.thick-
 nesses of these two layers are of

'	 the same order of magnitude, the

 Stokes layer is fused into the

Fig. 2. Oscillating circular 	 stationary layer, but, if the

cylinder.	 thickness of the Stokes layer is

much less, it preserves its individual nature. Now, the thickness ratio

of these two layers is

7
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r A	
rW L 1-0 Fit

The order of magnitude of the Otrouhal number, therefore, io a funda-

mental parameter in definition of the otructure of the boundary layer
in 

OU011 a Que.

y	 U, P Lk,, , Ut, sin w (

litokoo -layor 6.

6. . X

6 QBLkI

Fig.  3 - Oscillating flow on flat
plate (laminar) .

The analytical colution oo of
thio problem generally have been
found, on the aouumption that the
external velocity fluctua'v-ion ic,
omall

Ve- -. U" (A + 4 eiwL ) withe <4 ,i	 (14)

The conditions at the limits are:

a4 x Aj- IL 0

-.0. U-

Ut.	 OV,	 o

The solution was found [Lighthill, 37] 0 by expanding the velocity
by powers of e. By introducing the reduced variables

A,
wE	 M:

and the reduced current function

the first order solution has the form
?1j 41

( F " £P-
Z( I ^ )

:	 Ix- ) I

If the Reynolds number U,) x/v is large enough, solution F1 is the
^UBlasius function F b a function o of n=U 0— Oej/2 alone.

2v

(15)



for extreme valueo of x.

x
Aj,

When is small, t is expanded by the power  W-400 	 The -olution

hao the form
f : X ('9 	 n ^ ^a^	

(16)

where fin is the solution of a differential equation which uoec 
f r,-I'

For nw O. a quacictationary boundary oolution lo obtained (X+C).

f 0 is obtained by writing that Blaoiuo function F b io the solution at
each instant. The utilization of expression (14) for U e and expancion
by a small perturbation reoulto in

	

j	
--)) - 

't d

	

jLV 

V	

Y

	

V
Ib ( -^.-	 ')	 (I"'.I " I

therefore,	 . 7 d"-.

When the Strouhal number to large, the boundary layer has a two
layer structure. Near the wall, a oh l ear layer of the Stoker, layer type
develops. Its thickness is on the order of (VAO)

1/2 This internal
:;olution is a function of yny(w/v) 1/2 , and it is written

A1.9
(18)

The principal term is the Stokes solution.

The external layer has a thickness on the order of x/(U ex/,V) 1/2

and its solution is found, as a function of 41:

It is written

(19)

Figs. 4 and 5 give some summary results. Evolution of the depth
of displacement and wall friction and solutions for intermediate Values
of the Strouhal number have been obtained numerically [45-47]. In
particular, it is noted that the phase of the coefficient of friction

11
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urr-It _WX
I UO0

Y
I	 In Inn

O'l	 1	 10	 100

610
1

UO "- UO (l. esin wt)

61 =610[1+C'1 +. sin (0'	 + x)]
6?0

* - - - - - - - - - - - -

tendo toward 1150 ; while X/UoO
tendG towardo infinity, ao
in th" Oo tokeu- Oolution. It al 
is noted that, 

when 
the Ot•oubal

io large, the external region of

the boundary layer i0v oubjected

to puloation ao a unit, when
the Stoke. layer 

Is 
very thin.

O olution (19), in facto Chowo
that, 

in 
this area, there is

WX	 Consequently, product
on

UO	 slue =
10 (U -U)dy remains constant

over tj' Me 3 for the very small
Fig, 4. Oocillating flow on flat	 region in the vicinity of the
plate (laminar); amplitude and phase 	 wall contributes little to 61,
of 6 1 (from [29j).

This explains the behavior of
the amplitude and phaoe of 6	 for large values of wx/U1	 0 0

in order e 2 ,  a stationary term p appoaro in the solution. If
2	 2numbers R,=(vce/UO2 1/2 and e H o 

=C U 0 L/v are close to one, the boundary
0layer equations are applicable to calculation of 

Us 
[45-47). With

available experimental and numerical reDulto taken into account, it
appears that these secondary velocities are small, even for large ampli-
tude external. velocities. If this so, an important simplification re-
sulto o since thQ average profile is the classical solution of the sta-
tionary equations. Sometimes, with an average pressure gradient, espe-
cially in the vicinity of the separation, the secondary velocities can
become important.

2.4. Effect of Phase Volo^city

The response of the boundary layer to a perturbation in the form

tic= UOC + U4,	 6
	

(20)
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5'TO

0.
0	 1	 2	 3

4CO 	limit

200.	 U, = Lo (1+ esin w t)

100	 T4
Tp = To ( I+ el s"in ( w t cO)

0	 1	 2	
3 WX

LJO

Fig. ^. Oscillating flow on flat
plate (laminar); amplitude and
phase of wall friction (from [29)
4^_47]),

der'LlidC grectly on thc

eorivecticn of thc wtavc,

Pat-(,I LaV de-ne an experimental
Gtudy, by producing a oyotem of

eddle -, escaping fror. a zwinrino
shutter (Fig . 0. Located in the
flow at velocity UO) the eudieo
move by convection at velocity Q=

0.77 Uo'

In the first ordur, the reovonoe

of the boundary layer to the per-
turbatioi, is in the form

U = VO t. V4 Sw( CAJ (" %)* T) (21)

The experimental results indi-
cate that the profile of continjouo
componont U./U. Is not affected
by the oocillation. It remains a
Blasius profile (U0 0 is independent
of x). Actually, even if there were
nonlinear effects, they would be
very weak, for the reduced amplitude
is 105 at moot.

%	 'j- -.^_ -

1	

The U 1 /TJ l amplitude and phase
^Yx

e
_1-E profiled have some peculiarities,

eopouially around Strouhal numbers
Wx/U o' in the vicinity of 1 - The
amplitude has values very clearly
higher than 1, on the order of 1.6

Fig. 6. Experimental assembly	 (Fig. 7), while, in the ease do-
used by M.H. Patel.-	 rthe lamina
boundary layer was studied on	 scribed in the preceding section
auxiliary plate a.	 (which corresponds to Qtw), the
amplitude becomes not so much jyiore than 1, around 1.1. For some
val ,. , er. of wx/Uo e ; the amplitude profile, moreover, has values clearly
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less than 1 toward the outside of the boundary layer. The theoretical

elements developed by Patel, which are an extension of the methods of

Lighthill, are valid for extreme values of the Strouhal, number (w x/Uo +0

and w x/Uoe+w ), do not allow explanation of these peculiaritie*. ^ccord-

ing to Patel, they must be associated with the fact that, when w x/Uo

0(1), the inertial and frequency terms are of the same order of magnitude.

U. = U,a +U., sin w(t-

U : Ua +U, in [w(t_Q) +4)

u,	 a = 0.77 Uo

Uej 1	 f	 2

0 G
0 ^	

^	 J X
ua

1. low frequency sot.

_1000 	
2. high frequency sol.

jr,^[

Fig. 7. Laminar boundary layer
of flat plate perturbed by a pro-
gressive wave (from [33-361).

The phase profiles indicate

that the velocity in the boundary

layer always is slower than the

external velocity.

Two parameters compete to

determine the phase distribution:

velocity ti e and pressure gradient

-p 3. Now, the expression for

this gradient is

a dP	 Sup ; 0 aue ' QU (4a^^^^}cWw(E.x^
Pvx " a b 1. ^x	 '^ u?

^, x

At low Strouhal numbers, the /6

velocity parameter prevails. The behavior of the boundary layer tends

to become quasistationary, and the phase shift: are small. When

w increases, the pressure gradient parameter becomes large (E q. 22).

If U1 
e 
/Uo 

e 
is small enough, the first term on the right side of (22) is

dominant and, when convection velocity Q is smaller than Uo , the pressure

gradient term lags 90 0 behind Ue . Besides, the interior of the boundary

layer is more sensitive to the pressure gradient than the exterior,

since the inertia is less. Therefore, this explains the negative phase

shift values. This same reasoning explains why it is not paradoxical

that the phase shift is positive when Q-^- (see Section 3.3).

A singular situation results when Q=Uo , for the pressure gradient

is zero in the first order. The solution proposed by Patel, for large

values of wx/Uo ,e , effectively indicates a change in behavior of the

amplitude and phase profiles around Q =U o (Fig. 8).

12



U. w U.0 +U,, sin w(t _X)̂ 3.1. Experimental Results

I

3. Turbulent Flow

U	 Uo +U, sln[w(t_	 )•O) In turbulent flow, under-
U,3 a 0.5 standing of unsteady effects is
Ue, 00 much less advanced than in laminar

2 p,64 flow.	 The experimental efforts have

concerned some particular points.

Q.77
00

Several studies have been devoted to

oscillating flow around an average

zero, with the effect of wall rough-

0 ..---r--,-..,-.^ ness.	 These studies often have been
so. Y(W /2v)"' 10 motivated by shear wave problems in

oa
10 the depths of the sea	 [21,	 22] .	 The

effect of pulsation on a boundary-800
05

layer of a flat plate also has been
.10001 //4,77

studied	 C9,	 23,	
,^
^0,	 Ill .,	 but system-

-150 0 atic analysis of the various parametk

which can affect the structure of the

Fig.	 8. Effect of wave convec- turbulence is still far from being
tion velocity
frequency

(from [33-361.	 High
theory wx/Ue =5).

achieved.	 In continuing study of

° laminar flow, M.H. Patel also has

carried out an experiment in turbulent flow, on the effect of the phase

velocity of the perturbation wave but, there also, the field of study

remains largely open.	 Finally, very recently, several studies have been

directed towards the effect of an average pressure gradient	 [3,	 1.2-15,

24,	 38, 411.

3.1.1. Oscillation Around an Average Zero

In Europe, studies of a turbulent boundary layer induced by oscil-

lation imposed on the flow have evolved mainly in Denmark since the

1960s. Recently, Jonsson published an article which focuses on the

group of studies carried out at the Technical University of Denmark.

There, he also presents some outside results. The aim of the analysis

is to demonstrate the existence of universal relations for the velocity

13
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profiles, and to establish practical rules, cspeoially for the coef-

ficient of friction. The results are mainly for a rough wall.

Accordingly, Jonsson was interested in flows, for which the exterior

velocity is in the form

U. Z V", cos WE	
( 23)

In the boundary layer, at the first harmonic, it is written

U ^ U,, c05^WG+^^
(24)

We note that, since the flow is turbulent, it is advisable to

define the average u correctly. This velocity is the average of a

set and, when the flow is periodic, it also can be the phase average.

Therefore, u is an average of the instantaneous values recorded in

different cycles, for the same phase angle wt within 2v.

Jonsson studied a deficit velocity, which he defined in complex

form:

Ua _ u j 
e (LLB	

^ u^ee`^'^ v
At̂  ^i (wb:ci•^^)

7m

V	 U,,	
f ,e.

In a stationary turbulent boundary layer, conclusive progress has

been made, due to the existence of a recovery region, where the velocity

changes logarithmically. Under rough conditions, the rule of the wall

is found by using the following reduced variables

U / U-C 	 and	 ^ I k

where Ur is the friction velocity, Ur-U e (Cf /2) 1/2 , and k is the height

of the roughness.

Jonsson attempted to verify such a logarithmic rule, by consider- /7

ing velocity U and friction velocity U r at the same instant.

(25)

14



and it takes the form a :
	 A- (Uf U)

P	 jo- 6L (27)

4130

I M15

.t0j),0011311,TTY OF THE
P'rTl	 r" is POOR'J't^ t^j' P'hG
ORICY

The friction velocity was determined from measurement of the
velocity profile and by means of the summary equation of the mo-
mentum.	 This equation is quite simple, It results from the local
equation which, in the case of parallel flow, is written

6U Z eve,
ri	 al; (26)

10

4

k

.0

Mo

" layer ?\ Inner lag
40.4 - 	'\ /1' Inner 

I",

U.

46 
2	 ____L

Fig. 9. Turbulent boundary layer oscillating
around an average zero (from [21]).

zao'

U/UV



Fig. 9 shows that, during a large part of the period, the measure-

ments are grouped around the same curve ao in stationary rou te flow, of

the equation U/U r=5.75 log(30y/k). Large deviations develop in the

neighborhood of times when Ue is nullified.

Determination of the eddy viscosity vt shows that, in these same

periods, v  has negative values, because of the inertia of turbulent

friction -p<u'v'> , with respect to the constraint 8U. Meanwhile, these
Z)y

periods remain quite limited and, for practical calculations, the utili-

zation of a hypothesis of eddy viscosity should not be rejected a,

priori. In any case, it must be noted that the frequency imposed on

the flow remains low with respect to the estimate which can be made of

a characteristic frequency of the turbulence. This can explain why some

classical results of stationary flow remain valid.

In a less convincing way, Jonsson also establishes the existence of

a universal rule of deficit velocity, in the form

tr'j ', j UZOV10 M tz ( ^ I ^

(b is, by convention, the closest point of the wall, where the maximum

velocity equals the maximum external velocity).

The existence of such a rule and of the rule of the wall, in the 	 /8

form U/u r=fI (y/k), implies that of a rule of logarithmic recovery.

Jonsson proposes

it 	
5,75 2r (A,AS31 ')

The extent of the recovery zone diminishes, when the ratio of the

amplitude of the movement to the outside a l e=Ule/w to the height of the
roughness k decreases. This zone disappears, for values of al

e 
/k on the

order of 30.

It also must be noted that the existence of a rule of the wall

U/Ur= f 1 (y/k) implies that the phase shift of the velocity in this region

remains constant. In fact, it is enough to allow that U r is in the form

Ur=Urmcos(wt+^ 0 ), and the following is obtained

U= Ur.N f,Q/'A) COS (UJ^ "$)
16



Experiment shows that, in the recovery region, the phase shift

remains quite constant, but it appear^ to evolve in the viscous region

under the layer. This then donies the existence of a rigorously uni-

versal rule in this underlying layer.

In order to permit complete construction of tho, velocity amplitude

and phase profile, Jonsson found a representation of the phase profile

of the deficit velocity end. 
Fe 

proposes

Td	 2 t b 2t5

Prac tical rules likewise have been proposed for the parietal coef-

ficient of friction and the boundary layer thickness b. For thickness b,

he proposes, under rough conditions,

J 
_ Q , c;7 2 (0,, 

^)VH

Two conditions are distinguished for the coefficient of friction

U1
At

Q AM	 > A 6	 '^(1MQ^( l^^oGC1s

Ute
be

Jonsson also has proposed formulas for the smooth condition

U1t 	
E

P 
1

4 	 0' 04 ^5	 ^^	 UAP

a	 0,4	 apM ^W

3.1.2. Oscillation Around an Average Nonzero Constant

In this section, we are interested mainly in the case of a boundary

layer of a flat plate, perturbed by a sinusoidal oscillation of the

external flow

Ue :: U
aP 

. U,, US WE	
(28)

1.7



At the first harmonic, the velocity in the boundary layer is in the

form

U - UO

As in Section 3.1.1., U is the

velocities. The difference between

average of the set is the turbulent

defined by the averages of the set,

the turbulent pressure is -p<u7vl>.

cos (Wt + 10 +..,
(29)

average of the set of instantaneous

the instantaneous velocity and the

fluctuation u'. The moments, also

are designated <u 72>, <u' 3>, and

This problem is the basic circumstance of numerous practical situa-

tions, and many numerical solutions have been proposed over several

years. For a long time, the only supporting experiments were those of

4arlsson. Recently, others have published [9, 20, 1.1, 12]. The table

below gives the principal characteristics of the various cases studied.

OQ^

4^S VO 4

ry

ON^

tMIA

i
KARL35ON 4,S7^ 0 0,30 21 5 0,75 j	 0 6

4,57 0,31 0 	a
eo

-
i	
0,75 j	 1.13 -

5,33

F

0,to
0,34

0166 S	 1,94

»

-

1
1.37

_ a

3,95
1!	 ,92

-
2 I	 5.,99
4 11.60

» 1.65 » - 22,54 -
- 48 0,14 2,9 1,02 77,07

CHARNAY
MBLiNANO

10 1603 .03
10

0e©6 j	 ,016 1 C

1u I6,S

0,11
0,10

1,2
0.1

0,0	 17,90
0 ,066	 1,16

30
50

9° j
10 56 0,03

22
0.9

4 i	 J
0,6	 31,

1
70
0

25
20

0.2
i	 i

hOUDEV11 U 65 140 0,74 0,55 3,1	 1,63 600
^t oL II sta.4

I

CO IT OM 33.60 a,] ^ 0.37

'

005 1.2	 4,60 1230

I

In this table, X designates the distance of the plate on which the

boundary layer is studied to the leading edge or, in the experiments of

Hou.deville et al and Cousteix et al, the distance from the fictitious

origin of the boundary layer, calculated from the experimental data, on

the assumption that the average characteristics (in time) of the boundary

layer obey the stationary laws of the flat plate. A characteristic

18



frequency of the turbulence has been defined by fT=u 1 /8 , where u r is

a characteristic velocity of the turbulence, for example, /W—T2.

In the experiments of Karlsson, the measuremonts provide average

velocity profiles U  and profiles of in phase: components Ulcos^ and out
of phase components U 1sin^. The experiments of Charnay and Melinand
Give profiles of the average velocity, tho average of the set U at
different instance of time in the perfod and : ome longitudinal and
transverse turbulence intensity profi.loo, lrt tLic experiments we have
performed, we measured the profiles of thu average velocity U, which

are analyzed by means of harmonic dee:)mpo ^.tion, and we reported the Uo,

U1 and ^ profiles. Profiles of the longitudinal intensity of the
turbulence <uj^> 1/2 and turbulent pressure -p<u'v l > also were reported.

The density of probabilities of u' also was determined, as well as the

oblateness factor F=<u'4>/<u2>2.

Average Velocity Profiles

The most evident conclusion of the experiments of Karlsson and 	 /9

our experiments is that the average Velocity profile: U  is practically

unaffected by the Lln6t^ead.y nature of the flow. However, it seems that

the experiments of Charnay and Melinand contradict these observations.

They particularly indicate an amplitude effect. Actually, for a

Ule/Uo 
e 

of 0.2 (f=18.5 Hz), the average velocity profiles clearly are

different ("squarer") than those obtained for U
1e 

/U
oe
 <0.11. For this

• 

same value of the reduced amplitude, an 80% increase over the station-

ary case of the average thickness of the boundary layer has been measured,

as well as a 15% increase in the coefficient of parietal friction
(X=0.9 m, f=18.5 Hz). The observed effects on the average properties

of the boundary layer seem all the more surprising, that the experimental

conditions are approximately in the range of those studied by Karlsson.

In any event, if the effect of a turbulent perturbation of the
external. flow [2, 81 arid. that of a harmonic perturbation are compared,
as Charnay and Melinand note, the effectiveness of the latter on the

average characteristics is very weak. The fundamental, diff'orences be-
tween the two types of perturbation must be emphasized. In one case, the
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Y(mm)

0	
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1

energy to diotributed in a spectrum. otmilar to that of turbulence, and
it io a band in the other. We note that, in oome caoec studied by

Karl000n ., the frequency of the perturbation betwoei: the rVnge of char-
aeter^otic frequencies of the turbulence and the effect on the average
profiles is not so large, The tridimensional and unidirectional
natures of those two types of perturbation also must be compared.

Perturbation and Phoce Amnlitu'de

Qualitatively, the amplitude profiles we obtained and those of
Karlsson have the same trend (Figs. 10, 11). In particulax, they
exceed the oi)ter value in thr external. reSJon of the boundary layer.
These excesses can be on the order of 15 to 20/0). When the Strouhal
number increases ., a layer similar to the Stok-es laminar layer develops,
of less and less thickness in the vicinity of the wall, and in which the
amplitude variations are confined.

Y(MM)
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4
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• Coniiguration 1

* Configurabon 2

5

5	 U,

Ue = UMe ' U 1 . sinwt

U = UM - U, Sinwt	 + U2 coswt

= U
M + AU sin(Wt+	 ......

Fig. 10. Turbulent boundary layer in oscillating flow.
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Y
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o	 0 o	 b

U a UQ . U, sin(wt.#) 0 1	 ^ 0

	 1,,M	 0	 !	 L Y. 

	

U1,	 U1,

Fig. 11. Turbulent; boundary layer In
oscilaCting flow: U l /Uo -34.4%—cjx /Uo=

3.92-f ox =0.88 . 10 ( from [23 )

The phaso ^ profiles are not given explicitly in the article; of

Karlsson, but they can be determined from the in phase component

Ulcosc and the out of phase component U l sin^ profiles. With the scale

on which these data are reproduced taken Into account, so1e inaccuracy

results from these analyses. Meanwhile, it appears that the results we

obtained complc t:ely cot°firm these interpretations. Generally, it is
observed that the phase is positive in a zone near the wall. As in

laminar flow, this can be explained by the fact that the pressure; gradient

leads, the external velocity by 90 0 , and that the less Inert boundary

layer in the vicinity of the wall responds more rapidly than the external

flow. Toward the outside, significant negative values have been measured

fox, some Strouhal numbers: 2.95., 3.92, 5.89 [231, 4.6 [11, 12] . For the

other Strouhal numbers studied, the recorded values of ^ toward the out-

side are generally within the experimental error. Similar obuervations

have been made in Laminar flow (measurements of :fill and Stenning, cal-

culations of Farn, Arpacl and Clar y). As a function of the Strouhal 	 /10

number, the lag, of the phase maximum in the boundary layer 9.s at a

maximum for values of wx/Uo e on the order, of 2.5-3.5•

it also is noted that variations of ^ are established in a zone,

which becomes thinner when the Strouhal number increases. At large

Strouhal numbers, the outside of the boundary layer pulses as a unit.

The phase shift is very small, and the amplitude is very close to the
external value.
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enap,o, uhf ft He ation Near tbo Wall

Finally, it to noted 
that 

the phaoc near the Wall hav, a MUxAmur.,

and dccrea000 at lewor Valueo of	 It i(j, notod thcott tho GXiCtonvo of

lei;°arf.thrri'i recovory Perjon implico that " , Yo phace ohift mu c t be

conotant a 	 equal to itc, v,-.'.jiO at t,,yc wall [111] 	 It alog; can be chown

here, by aozuming that thcvc; '.P. a un^ver6nal rul(., near the wall, in the

form

,4A:t -- 

+	 q^lt)
a".- C4 / U'̂ ' 	 r. ^	 Ar, - UC(

For tr 44.o, we uoe tic, following complex notaticrip.

(IQ.	 ()6to 
+ "4e 6	 lk

Y	 VO -4 T4

Gf—	 Uo + -U4

jj 1 th L Ul.L Tjo	 actual avd y j and U., ccmplex. By aoouming

U	 ) Ural aru small	 comp4M.- ,; -- (.'	 1 7,	 y,-	 ._r,;c'	 U ct ,
+

the rule -U

f(Y ) can be deVeloped ) and the following are obtairied

W	 Y Vo rLO)-	 f (

YO QOC
(

4114e +!^.)(f	

Yro
(32)

d V'

Formula (32) indicates that tho phase 	 of u is ftndcjjcn,u,(;!., .t;	 of

y. It is such that

DoE

Therefore,,	 it is equal to the phase of yU 
e 
=(r P /P) 1/2 and therefore, to

that; of the wall friction c P 4

This conclusion is, compat.lbl .: with	 Only in the region

where the phase passed Jtr, maximum, ",nd At can be thought that the

interpretation of the v4 riatior. of ^ very	 to the wall requires

sharper analysis of the v l i-cci.F. underlyirg layer.
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lcanYihil( , I t cC4vA be rioted that thu m:'eximum or ¢ o ccuro 3n a xrevic,n

4rhGvc the logarithmic rule iv, e0taLl-i lled ire ct;aata^ra^t^ r^̀  flov, (exce t for
ey t;rc r. ,40 very 11.1 gh ti•Uuca Qf the 2-;tvcuhc.1 rawn.bc-v tit + rat tp' by rel lk-c Vin,

C, €^ r t 	 `'^7^	 )	 We ;'a i:t t;Ya^^t " l c rtx t ionazr;^ rule rremaino vn3 J. 	 at..° a, ._., r .	 0	 f e

each inftant

'4d)
On th,, -- ,. h  ;. hand, 01mil a?ri ty volutjc,rr: parr'.	 1,( r,1 extended to t.ijc'

urc,tcc,dy case, aeeumln c^ O%Xic:ii 	 rule cf the form (Ue-u )/urr-

FI ( y /b(x, t ) ), and by ac ecpting a quaoictatlonary mixing lorag,;tl, € chcme
r il 13 r It then lo, ohe:wn th,%t friction can be calev.1ated at each
by the relatlonLliip

with

and	 16	 + 2141

.w ra

A small perrturbat toi hypct'ho is is thon made, and it is wr:itton,
in complex rotation

U .®	 Up

Ut	 Uo

*	 o4	 yo tw

L;4

H	 H. +	 H.,>aW
L̂

6	 :,	 0 1 +	 Oa a lW^

The expansion of relationships (33) and ( 3 11) then leads to

At..t;" Vs ~ j /fig sim Tq

with	 A	 2 . G.2S \ H,.e	 r X,

	

z ,ii J ":	 C.^A
^ w r	 4.s^'	 .^ i	 ^	 Er
.	 p	 H.	 'A
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^6a "and ^ Q , rc (^ I' 6 1 L'In"

^f 6, &rd 0 1 re(luacd by the	 V

A84	
S-41 1S#O

T
1	 1.

tokrj;-/n - --G- --

	

4,	

VO 4

The vtght hnn term of E'q, (3!
1
) can be deterri'l-ned frow,

aua. The Value wh'al. ttae kiGleciq	 11'r-rit. fir) the logaritbmio

,iGf. Wicn, 	Getornipc(l. Thic pha tvc, oho, 	 C, It, 11 G,

v;. 1Xu aac•rwinod expert, lent 	 which alme ir, compatiblo with

the theoretical recu2t of ^ w cote-

CGmVar!Vcn of the thoorcW cal vtIluvo 	 determined with the

vrlucl^ J." pj , (.V.PW w1, In FIG. 1". The rooult.-i cf Xco`J.r,ocn4

u Ni	 c 6 ) t	 &,,	 k)r. , -tuntktoly, could not bu ut,	,ccauoc the inforn.C.,pion J. ,, in-uffl-

Gent: to caloulat.c the right hand t (" r ri, of ( -., 1̂  ) . Our rC-&,U3%%,O hvvc- bcC11

plotted in FiE;. 12 [PO P llj 123 - Likewi3e, those obtainod wfth an

aver".'so Fro-uOure ^-,,,radicnt [12-1^3 Lila thoue of D1.11. Patvl^ who ha.."

otudicd the ofroot of t!4^ convection voloolty of thc y V ,.,t urb,,.,tJ on wavo,

aloo have beci. plotted. Tho	 is altopjethor good, evun

for reltativcly Ligh va-Il uets of the 2 1zeW,C,,1 number, on the order of 6 to 7,

Meaourod valuo	
Effect on Turbulence Charaottr-
T "A 3 _rG

500

U I , sin. wt A4)

U xUo * U I sIn(wt.^ u)

-150,

A COU51EIX.DC50E-l'ER.HOUCCVILLF(b)

ri III COUSTEN . MUDC VILL F (1)

a M.H PATUL(d)

In tho .4	 , of

Karl000n, only the average tinle

value of' L,Yjc inteiL;Jt,y- cf the,

turbulence was meaoured.. It
is imposviblo to detect a pos-
oible effect of frequency on
there profile ., especta42y with

the experimental error ard the
fact th"') ,V 1J.jjt(;X CIdoT har-

munies tNn I are. inciluded in

the measurement taken into
account.

/
01

with rot=n
flow

Fij,A,. 12.
Ilationohip forphP-SO shift ^ U-Ou in the

region.	 e
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11liv wox L. of, M,%rnev 'ancl :14cliriand iriVolved Otu(,I,^ ^,' 11,t, 	 Lcl,*r O-

f'ly rlil^ the Voloc"O'co ell tLe Inoldo (1.4aid Out.,Adc of ti-.e turbulent brxotr

It L" eviderst that3 for thc' "ItWoritx , et" o(, I the indentation,, of tt e
1,)Oun(:Ury Cre decper knd U."A 0	the Ortgln of thf^ bu.,not'" is deep-

( , r	 Ur fortunately, thlo, Otudy it, of too

ournmary a riafurv ) for anal 10 ak, a fl unction, of the r1la-o, har, riot been

(" 'arrieG out L"nd, urder UIC-00 CO11W,t1cD0 ., It Lr, diffloult to ma%( a

dioUnction betwoor thc forced variationo impolrod 
On 

the free 1)^,Uri(lary

by WIG puloation of tile flow and ito random vtariation,	 probably

1.0 a function of ti-.o, phao-,X.

r c,,a,­ 1-- f.4 A, ,wvnto of the buhovvrier of' cortain turbulent

quantttJec have boon x%ported by Couotoix ot mil, mainly in the cecond

aorif'k.b, urat.l on, which corroopondo to the highoc.t Ontroull." 'I numbr,1".

:,1oa ,,,urerixnto, of t ;e correlation cocVficitni,

which have an Ir"IFOrtant. role, In modeling turbulence, have been carried
out. Thoy ohow that this coofficient e^,c°lvuo 

in 
the Oame way ao in a

stationary Lounduv 2c.yor kP.4*k;. A^). 14 ear tho wall, within the moacuro-
Went erpo.-, it can b(, ccnoidered that It is constant, with a va3ue on

t.lic or,Uex, ci' 0. 115-C. 10, Turbulunt pr000ure meavurementc, 01.oc have r.,er-

mitted detcrmAnaticr, of the expe rime rtal devolopwonat of the mix1re

length k=(-4u 1 v 1 >) 1/2 
AU. This opera!;-cr LO	 UI V critical, for it

rcquireo calculation Optyl(; d(j)X _ jNratiVCL DU/Dy. ljowcvvr, it chowc, that,

In tho entirc period, tk, e mixing 51.rngth evolves in 
the 

boundary layer

in a very classical mcnilor., oxcept 
In 

a r.xrje 2ooatcd Ir the

ii ,it, cxturnal, velocity maximum, Whorc	 variations aro notes'	 :A).

it et "'I so fic of inteve:A to analyze the evolution of the• oblatcno„.k,'

factor F= <u l 4 9/<W 2 > 2 , especially if it iz intorpretod as discontinuity
factor y, by using the rulation obip y r^^/F. We recall that Y, in unsteady
flow, is a functicr. of i• hc,, diotribut.Jori of the free boundary of the

boundary layer. 12he y(y) ourvc, (Fit,. 3,,r,) dependo on phaoe, and this

dependenw,; oaE-,cntivll^	 the for-cod variation of tto bc-undary

Layer thdc nwc o. Actually, if y is plotted at y Y=0,5 (the value of y
for which y=0,5), all the points are grouped, and they form a curve sim-
Ilar to that given by Klebanoff, in tho ou-se of tho ,*t.3t1Qnr,.,, xy boundary

layer of a flat plate. This tends to show tht.Lt 1;hu purely random
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Fi.g. 14. Pulsed turbulent boundary

d6 
layer, mixing length distribution,

variation of the: free., roundary
if', Mt-, affected by the unoteady
nature of the flow.

Other measurement, reported

in detail by others c1.1, 12;

tend to inch cafe a quasi--
stationai--y behavior of the tur••

bulence. However, it must be

noted that the measuremento wtrF,

made under conditions, such that

the frequency imposed is quite
clearly less than the character-

istic frequency of the turbulence

fT ,

An estimate can be made of

the condiu:;.ons tinder which these
two frequencies are of the ^,ana
order of m,- Ion't ide. A charac-
teristic frequency of the tur-
bulence is fT=u'/8, where u' is
a characteristic velocity of

the turbulence, for example,
(u^) 1/2 . It con, be estimated

that the order of magnitude of

u,2 Is g i.uci by (rP /p)/0.3

(it is assumed that, near the

wall, - u1,T'=0,3u'2). By using

the flat plate formulas C 
f
,

0.0363/R 1'/6 erM, Slyw C . 25/Rxl/6x. 	^
it is found that fT/fn,27rRx 1/2 ' S
f  ar.d f are of the somac, ovdc ,
Of magnitude, if S=27rRx1112
For Reynolds numbers of 10 6 to
10 7 , this condition is satdsfied
for very high Strouhal numbers,

on the order, cf 40. Under such
t n
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Fig. 15. Pulsed turbulent bound-
ary 1,>, yer, oblateness factor.

conditiono, unsteody effects, develop

mainly in the underlying layer, and

tho bursting phitniow cnci'{ oon be affected.
For higher fr vgkcrrier., 1 1., con 1..c

asked whetY;er a frequency does not

exist, beyond which the uns teady ef-
fects on turbulence become vez°y weak

since, then, the unsteady layer is

limited to an almost purely laminar
zone near the wall.

3. 1. 3. Effect of Wave Convection
Velocity

M.H. Patel C."1 11-31 6] has developed,
in turbulent flow, a study cimilar to

that described for laminar flow in

Sectfton 2. 11. The ex.tcY1,! o,:w_ velocity
is in the form

Ue. = Uo e. r U-4e- Sin w(t - 
Q)

W itl,1	 - 0,77 U^^

The general conditions of the experiment are summarized in the

table below.

v,	 ^^ x	 w c 	 : C AS
MIS! Voc	 ' nn	 lk4

s

19.8,	 9 %	 4 11z 1 1,2B8	 1.64	 1,7.10 61
to to '	 'to;

11 %j 12 ft I	 4,gi I	 i

	

1 1,516	 1, 92 ! 2	 10 6 	55 11z
°to

i	 5,.17
1.745 2. 22 { 20.10 6 1

to j
6,65 i

It is noted that the imposed frequency is quite clearly different

from the characteristic frequency of the turbulence.

The observed effects on the behavior of the average velocity,

amplitude and phase profiles are qualitatively the same as in laminar
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flow. The average velocity profile is unchanged From the stationary

case. The amplitude exceeds its exterior value (Fig. 17), and the re-

duced amplitude maximum U /U. increases with the Strouhal number

(Fig. 16) (it is 1.P7 fortes=6e65).

0	 10	 20 Y(mm)0 

20tl	+ + +

40°	
++'^' ' + ^' U, = U' +Uh sill	 ..W( t Q

U,	
U = Un +U, sin (W(t- a) +0 ]

1,a . U•j + + + a = 0.77 U,	 _U=_ = 4,2 %.

+ 
+	 + 

+	
UO2

1.0
	 +

	

w = 3,27	 As in laminar flow, the

phase shift in the boundary layer

always is negative (Fig. 17).

0	 The absolute values of the phases
0	 10	 20 V(mm)	 ;sometimes are smaller in turbulent

Fig. 16. Boundary layer of flat layer flow (Fig. 16). As was discussed
perturbed by progressive wave (from	 in Section 2.4, two parameters
M.H. Patel).

come into play for the phase

shift behavior; velocity and pressure gradient. Given that the tur-

bulent boundary layer is less sensitive to the pressure gradient than

a laminated boundary layer, it is logical that the phase shifts are

smaller than in a turbulent boundary layer.

Finally, we note that, in a large part of the boundary layer,

remains nearly constant (Fig. 16). This result is completely com-

patible with the existence of a universal rule u +=f(y+ ) (see Section

3.1.2). We recall that the values of these phases were compared to the

theore^ical values, calculated by Eq. (35) (Fig. 12).

Likewise, M.H. Patel measured the longitudinal intensity of the

average turbulence over time. No effect of the pulsation was recorded. /13

Within experimental error, the profiles are identical to those of

stationary flow.

It is noted that the

Strouhal numbers studied are

larger than those in the study

conducted of laminar flow, and

that the singular results ob-

tained around S = 1 were not ob-

served in turbulent flow.

28



Q ,

Fig. 17. Turbulent boundary layer of
flat plate perturbed by progressive
wave (from M.H. Patel).
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3.1.4. Effect= of Average

Unfavorable pressure grad-

ient

Several experiments now

are under way or planned, to

study the effect of pulsations

on a boundary layer exposed to

an average pressure gradient

L38, 41, 22, 3, 12-151 . The

principal characteristics of

these experiments are summarized

in the table below
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In the above table, 7;=0 corresponds either to the leading edge of
the plate on which the boundary layer was studied [24, 413, or to the

fictitious origin of i-he turbulent boundary layer, determined from the

experimental results at the first measurement station [38, 12-151, or

estimated [37.

It is noted that the use of a hydraulic cell [3] is a good means of

easily obtaining high Strouhal numbers and pulsation frequencies, which

are in the range of the characteristic frequencies of the turbulence.

In the experiments reported by Kenison, no unsteady effect was

noted on the evolution of the average characteristics of the boundary

layer over time: velocity profiles; coefficient of friction; density of

momentum; shape parameter, intensity of turbulence even in vicinity of

point C f=0 (Fig. 18). Upstream from C f=O, a zone develops, where the

velocity periodically is negative. This zone remains thin, and the

rough thickening of the boundary layer is observed practically in the

same zone as in stationary movement.

The amplitude and phase profiles also were measured by Kenison.

The phase profiles indicate tendencies associated with phase shifting of

the pressure gradient DP with respect to the external velocity. The

phase shifts in the boaAdary layer are more pronounced than in the case

Uo=cste. This can be explained by the fact that, in the vicinity of the /14

breakaway, the velocity near the wall is much lower, and the inertia,

therefore, is much weaker.

The experiments of Schachenmann and Rockwell in a conical diffuser

with a 6 0 total aperture indicate that the average characteristics of

the boundary layer are not affected by variation of the pulse frequency.

The average pressure recovery coefficient is not affected either. Pre-

liminary tests conducted by Binder et al with much higher Strouhal

numbers lead to identical conclusions, as long as the boundary layer is

not separated (2a< op	 7 ). For larger apertures, very noticeable improve-
ment's in yield are obtained by increasing the frequency. It must be

noted that, in these tests, the external velocity frequency and ampli-

tude varied at the same time, and it is impossible to separate the
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effects due to Frequency and

those due to amplitude. Very

strong relative amplitudes

were obtained up to 1.2 11. in

addition, this problem brings

into play coupling between the

external flow and the boundary

layer.
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X(m) mainly concern the average set
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,167, 
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velocity, amplitude and phase1
. 

profiles.	 At '..he station pre-

sented, it was found, in par-
Fig. 18.	 Turbulent boundary layer

ticular that the average setexposed to average pressure gradient
perturbed by progressive wave (from velocity profiles all have a
Kenison).

semilogarithmic region, in

which the phase is practically constant. The great thickness of the

boundary layer has permitted precise determination of the phase varia-

tions in the underlying layer. 	 These soundings confirm the very high

sensitivity to unsteady effects, 	 and they show that phase ^ varies very

rapidly.

The first results we obtained on the effect of unsteadiness on a

boundary layer subject to a pressure gradient were presented in detail

during this colloquium. In particular, data obtained by means of a

laser anemometer in a zone with back flow are described there. As this

zone develops, the unsteady effects become larger. For example, during

one period, the shape factor at the last measurement station varies

between 2 and 5. When the shape factor is raised, very noticeable modi-

fications of oblateness factor' F are noted. In particular, F increases
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in the vicinity of the wall. :Meanwhile, it was verified that the

average set velocity profiles at each instant of the period can be rep-

resented by profiles, drawn from a family established in the stationary

state, in the outer region of the boundary layer (Fig. 19). This was

observed, as long the instantaneous profile did not have a negative

velocity (11<2-2.3), up to Strouhal numbers on the order of 6 to 7.

Likewise, the existence of a semilogarl.thmic region could be observed

at each instant during the period, the extent of which decreased, as in

stationary flow, when the shape factor increased. It practically dis-

appeared when H was on the order of 2 to 2.3. In this region, the

velocity phase angle in the boundary layer, with respect to the external

velocity, has an extreme, the value of which has been compared to the

theoretical value given by Eq. (35) (Fig. 12). Good agreement is obtained,

up to the time when the average velocity of the set becomes negative in

a small portion of the period. Here again, rapid variations of the

phase angle were recorded near the wall.
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Fig. 19. Pulse turbulent boundary
layer with average pressure gradient;
comparison of instantaneous velocity
profiles to theoretical family.

3.2. Calculation of }Boundary

Layer

Most of the methods pro-

posed and actually used are

extensions, frequently very

direct, of those perfected in

stationary flow. Two types of	 /15

methods are distinguished, with-

out comparison: methods of solu-

tion of local equations and

methods of solution of global

equations.

3.2.1. Proposed Methods

In the first type of method,

the basic equations to be solved

are local equations of continuity

and momentum, which are derived
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m^

from Navier-Stokeo equations (1) and (2). The instantaneous velocity

is broken down into the average of the cot u  and the turbulent fluc-

tuation u l V After applying this breakdown in equationo (1) and (2),
forming the average of the set of equations obtained and using the

boundary layer hypotheses, the following is obtained

ax " S% "
	

(36)

u	 ^u.	 au.	 ,1 a P	 1^	 'u'>

Different turbulence schemes have been tested. The simplest are

the "zero equation models," eddy viscosity [ 145-48, 71 or the mixing
length models [10-15]. These models are identical to those used in

stationary flow. For example, the mixing length model is written

.. 1	 } w ^t (LU
a^
	

(38)

where k/d(x,t) is the some function as in stationary flow

w	 v,a,j5

Near the wall., corrections are introduced to allow for viscosity

effects.

Several. other authors have used a one equation model for the

Reynolds stress [4, 42, 321. A two equation model for the kin etic

energy and dissipation also have been used [10-151. In these models,

only the convection term is modified, by including the time derivative.

For example, the two equation model is written

z A(39)
3t r
DE

^t	 ) hu-
rMkLa ( 7, T	 (40)

In the second type of method, the local equations are integrated

over y. In general, they use the integral equation of momentum
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aI t V ;4104 )'r.	 4 at c

and, frequently, an auxiliary equation, which can be the integral

equation of continuity

U^,t&»^i^^
x^' a	 iii, ^x	 ( 42)

or the integral equation of average kinetic energy

3

S	 Ut ax.	 pt U1 d^ U

or, again, an equation of momentum, obtained by multiplying the local

equation of momentum by y

f^^^ d`^ * 1C;`^ _f its ^(^u.v,?d^-^d^

(44)

Whatever the auxiliary equation used, it is necessary to have

available supplementary relationships to solve the integral equations,

since they bring out an excessive number of unknowns. These closure

hypotheses are relationships between the integral quantities brought

out by integration of the local equations.

McDonald and Shamroth solve equations (41) and (43). The supple-

mentary relationships are obtained, by assuming that the average set

velocity profile can be represented at each instant by a Coles profile.

The coefficient of dissipation was calculated, by expressing Friction

by means of a mixing length scheme.

i
In the method proposed by Kuhn and Nielsen, the basic systems are

equations (41) and (44), which are solved after linearization, by

assuming that the unsteady perturbation is weak. The supplementary re-

lations were obtained by assuming that, at each instant, the velocity

profile is described by a Coles profile.

M.H. Patel has analyzed two methods. Each solves linearized equa-

tions, obtained by assuming a small unsteady, harmonic perturbation. In
E'
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one rule for the 6 l /6 ratio

F, l̀k

f
f

^t

(47)

35

the first method, the average tlow is calculated by a stationary method,

for example, the method of Green. With the average flow known, the

oscillatory perturbation can be calculated, based on two hypotheses:

1. at each instant, the wall friction can be calculated by a stationary

rule ( the Ludwieg-Till.mann law, for example); 2. the in phase and out of
phase components of the velocity are represented by

V4 	

`

Patel has obtained these profiles from his experiments. The se
expressions were utilized to calculate the perturbations of the

Integral. densities. R and S thus become the main unknowns in the integral

equations, and the solution provides their values.

In the second method analyzed by Patel, it simply is assumed that,

at each instant, the supplementary relations used in the method of

Green remain valid.

The method proposed by Cousteix et al [11- 131 likewise is an

extension of the method first established in stationary flow [313. The
basic system is made up of the integral equations of momentum (41) and

continuity (42). The closure relationships are obtained, after deter-

mination and analysis of the similarity solutions (similar in spirit to

the stationary solutions of Falkner and Skan of laminar flow). It is

assumed that the deficit velocities obey a similarity rule of the form,

(Ue-U)/Ur=F'(y/8(x,t)), and the friction is calculated by a mixing

length model. It then is shown that the resulting family of profiles

is strictly identical to that determined in stationary flow. It
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depends uniquely on the Clauser parameter:

The set of closure relationships necessary to solution of the integral

equations is then deduced:



one rule for the wall friction

Ertl zd^^'A 	i r`	 "►i 3 b^^i'^	 t ^} Q

one rule for the drive coefficient

With respect to the stationary case, only the relationship for

the drive coefficie nt is modifled.

Fl , D* and P are functions of 0, determined by the similarity solu-

tions
Fj

'^	 " .a	i	 + . N . I

3.2.2. Application of Different Methods

Despite the large number of publications on calculation of unsteady

turbulent boundary layers, it is difficult to compare the performance

of the various proposed methods. Frequently, the methods have been

applied to purely theoretical cases, and the various authors have not

taken up the same cases. L.W. Carr recently proposed standardization of

these examples. Without being devoid of interest, such exercises, mean-

while, are of only relative value. One method is compared with another,

and it is quite clear that no universally valid method exists in tur-

bulent flow. Only systematic comparison to experiment permits deter-

mination of the field of validity of a method. Therefore, here, we limit

outselves to reporting some results of such comparisons.

At present, the most complete example is that of a boundary layer

of a flat plate exposed to a harmonic perturbation. A comparison with
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available experimental data is presented in Fig. 20. We note that the

Strouhal number is not the unique parameter of the solution. The

Reynolds number and the amplitude of the fluctuations can play a part.
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It appearo that , for intermediate Otrouhal numbero in the 1 to 5
range, the variouo calculattiono are not too different from experiment.
For large Otrouhal numbero, there io a major difficulty. It io the

modeling of turbulence in the v iocouo underlying l ayer. Actually, when

the Otrouhal numbor io very large, the unoteady effects are included in

a very thin layer near the wall, and prediction of them io eoocntially

a000ciated with modeling of the underlying layer, and this problem io

part; of that of the interaction between the forced puloat ion and t;ur-
bulonce, oince the forced frequency io in the range of the characteriotic

froquencieo of the turbulence. Acharya hao carried out experimento

with pule flow in a duct, in which the amplitude and phaoo variationo

of the velocity are located mainly in the underlying layer. The cal-

culation tooto he precento effectively indicate difficulties.
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Fib;. 21. Calculation-experiment comparison: intensity
of turbulence.

We present a comparison of turbulence intensity and turbulent

pressure profiles we have obtained in Figs. 21 and 22. With the exper-

imental dispersion, especially of <u'v'>, taken into account, it is

difficult to state which of the methods used is better. However, it

appears that the mixing length model predicts the deformation of the

<u'v'> profiles more poorly, especially at instants 9 and 12, located

at the external velocity maximum.
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Viso. 23 and 24 ohow a comparison of the experiments of M.H. Patel.

The different calculations were carried out with integral methods. Up
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to the highest Strouhal number (6.65), good agreement with experiment

it obtained, the phase deviations certainly are not significant, with

the difficulty of determining them experimentally with precision taken

into account. In any care, a small dispersion must be noted in the

theoretical results for the largest Strouhal numbers.

Finally, Fig. 25 prooentu a comparison of the first results we

obtained with the average pressure gradient. The calculations, carried

out by the integral method, are interrupted at the station where a
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return flow appears. Actually, extension of the calculation area in

the recirculation region requires that certain conditions at the limits

along the boundary downstream of the area be taken into account.

3.2.3. Breakaway problem. Formation of Singularities in the

Boundary Layer Calculation..

The breakaway problem raises numerous other questions, and it still
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to not resolved, even in laminar

flow.

The only certain proposition

is negative. Breakaway is not

necessarily connected to point

Cfl =O, as in stationary flow. It

must be emphasized that confusion

frequently has occurred over the

word, breakaway, since some authors,

have, by definition, connected this

word to the fact that Cf=O.

Rather, it must be reserved to

signify catastrophe (breakaway,

breakdown) for the boundary layer

equations, by which the very no-

tion of boundary layer ceases to

be valid.

o	 znn	 400	 Several authors have proposed
Xmm	

breakaway criteria, principally in

laminar flow. We first mention
Fig. 25. Calculation-experiment	

that of Moore, Rott and Sears [393,comparison: pulsed turbulent bound-
ary layer with average pressure 	 established for the case of sta-
gradient. tionary flow with a mobile wall

(Up^0). Breakaway develops at a point where the velocity is zero and

where the gradient also is zero. This problem is a special case of un-

steady flow because, in a reference system connected to the wall, the
f	

flow isuite unsteady, and it has beenq	 y,	 proposed [397 to use a similar

criterion in the general cane. However, numerical studies have shown

that a singularity does: not always occur at this point.

A more global approach to this problem, always in laminar flow,

has been studied by Shen and Nenni, who found the existence of a singu-

larity, by a noncoincidence condition between the boundary layer and the

potential flow. This condition is expressed by the fact that the vertical

velocity becomes not limited at the boundary of the boundary layer.
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They have shown that the wall friction behavior gives an indication of

this condition. Besides, thAy have shown that the wall friction obeys

a Burgers type equation

q 	 x
Et	 -FQ ^ z'1 * 42H 2, ; ^^ " '	 (50)

hi , h2 and h 3 are functions of x and t.

Therefore, it clearly appears that point r p=0 does not, a priori,

play any special part, except in stationary flow (a =0), where a Gold-

stein type singularity then is found for rp , which De varies as the

square root of x. In unsteady flow, the formation of singularities must

be found elsewhere, in the form of a discontinuity by development of a

shock wave.

;:omparable results have been found by Cousteix et a1 in the tur-

bulent case, by analyzing the properties of the integral equations

(equation of continuity and of momentum), to which closure relation-

ships X47), (48) and (49) are added. It leads to the following

conclusions:

the system always has two real characteristic directions X1

and 
X2 

(X=dx/uedt); it is hyperbolic;

one of the directions, X l , is always such that 0<X1<1;

the 2nd direction, X 2 , is positive for values of the form

factor less than a critical value H c (H c =2.6); it is negative for H>Hc.

It also is shown that point H =H c , in practice, is confused with

point C f=O. Therefore, the result is that the formation of singularities

is not connected with point C f=O. When X2 
becomes negative, this

signifies that information is transmitted from downstream to upstream.

The development of singularities occurs by the formation of shock

fronts, across which the characteristics of the boundary layer are

discontinuous. It is clear that the hypotheses themselves of the
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boundary layer, then, are defective. It can be thought that, as in

stationary flow, coupling with the external flow must be resorted to,

in order, to avoid these singularities.

To support this hypothesis we consider the case of a separated

boundary layer, calculated as the limit of a transient development,

when time becomes infinite. To simplify, we analyze the case of a,

theoretical flow in a unidimensional diffuser (Fig. 26).

61( m)
0,02

with coupling
0.01	

f	 ........... a=0

0 0,1 0.2 0,3 0,4 0.5 0,6 0.7 0.8 0.9
--+o- X(m)

Fig. 26. Calculation of station-
ary boundary layer with recir-cu-
lation airhole by unsteady method
with coupling to external flow
taken into account.

For t<O, the external velocity

if constant, and the boundary layer

obeys the stationary rules. At t=

0, the velocity is modified dis-

continuously. U  decreases linearly

in the O<xE0.6 range, and U  is

constant for x>0.6. For t>0, two

calculations have been carried out:

In the first, without coupling, the

forced velocity at t=0 is maintained

independent of time. Then, when t

increases, a discontinuity in the

evolution of S1 
is found, which

corresponds to the formation of a

shock front.
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40
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0 02	 without
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In the second calculation, an 	 20

attempt at coupling between the

boundary layer and the nonviscous

fluid was made, simply by using a unidimensional section principle

S - 2.	 Ue(S.2S4) .. o
	

(51)

where S(x) is the diffuser cross section such that, at time t =0, the

velocity distribution satisfies U e (S-2S 1)=Cte.

In the second calculation, therefore, the velocity distribution

develops as a function of time, according to Eq. (51). Under these

!i 3	 1 1
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conditions, a, perfectly stable stationary solution results. It is of
interest to note; that this solution includes a return flow offset, and
that it shows no sign of singularities at points C f =0 . We stress the
fact that this could only be obtained, by means of coupling between the
nonviseous fluid and the boundary layer.

We point out that Nash and Scruggs have carried out turbulent

boundary layer calculations, by using a transport equation model. In

the theoretical examples with which they deal, they also observe the

formation of singularities, if the external velocity is forced. By

using a pressure gradient reduction procedure when the thickening of

the boundary layer is too great, they show that the singularity can be

avoided by maintaining a zone with return flow.

We also point out that Briley and McDonald have proposed a boundary

layer calculation technique with a breakaway offset, by an unsteady

method, while taking account of coupling with the nonviscous fluid.

4. Conclusions

Recent experiments and those which are underway are providing

indispensable data on the behavior of oscillating turbulent boundary

layers, which have been missing so far, and they can be the basis for

deciding the validity of the calculation methods.

Meanwhile, some areas still remain partly unexplored. In the quite

moderate Strouhal range (S<5), the effect on the viscous underlying

layer of unsteadiness must be better defined. This problem perhaps is

not too crucial for Strouhal numbers, since the proposed methods of tal-
i
P	 culation give results which, as a whole, are quite consistent with each

other and with those of experiments, at least when the average pressure

gradient is zero. For higher Strouhal numbers (on the order of 20), the

problem is much greater. Actually, unsteady perturbations show up in a

layer, the thickness of which decreases when the Strouhal number increases

and can be limited to the thickness of the underlying layer. Therefore,

it is thought that prediction of the coefficient of friction and of its

amplitude and phase depends mainly on good modeling of the turbulence in
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the underlying layer. Under such conditions, a second problem is raised:

for these Strouhal numbers and the cuNtomary Reynolds number, the fre-

quency imposed on the flow, within the range of characteristic frequencies

of the turbulence. Interaction between the harmonic perturbation and

turbul.enoe can then exist.

Breakaway and the formation of singularities in the boundary layer

calculation remain unsolved problems, even in laminar flow. Several

numerical, studies, in laminar, as well as turbulent flow, have shown that

singularities can develop .inside the boundary layer, but interpretation

and theoretical study of them are incomplete. These singularities fre-

quently appear to clearly oppose the validity of the hypotheses used to

establish the boundary layer equations. Nevertheless, it can be hoped

to remove these difficulties in a number of cases, by turning to coupling

with the external flow.

1
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