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OQUTLINE OF RESEARCH ON OSCILLATING BOUNDARY LAYERS
J. Coustelx

National Offlce of Aerospace Study and Research
(ONERA), CERT, Toulouse, France

1. Introduction

Very diverse motives assoclated with the subjects of research /1%
and application in flelds, such as aerodynamics, hydrodynamics, bilo-
mechanics, meteorology and oceanography, have stimulated study of un-
steady flows.

| We are particularly interested in the behavior of turbulent unsteady
boundary layers in aeronautlcs, especlally in helicopter and jet engine

, nroblems. The turbulence parameter is of fundamental Interest in this

; limited field of unsteady aerodynamics. In fact, it appears that the

| analysis of unsteady flows can contribute interesting data for model-

ing and calculation of turbulent flows.

The mcst common unsteady flows are periodic and, qulte naturally,
they are associated with the basic case of oscillatory flow. We review
recent work on this question, limited to that on the boundary layer.
Other fundamental subjects, such as wakes, jets and flows in ducts, are
belng studied in several laboratories and also are very important, but
they are set aside from thils review.

T ——— T T

Except for the work ofgkarlsson, 1t can be said that the development
of calculation methods preceded that of experiments. Thils 1s partially
5 explained by the necessity of having available means of acquisition of
numerical data, whille most of the means used so far have been analogic,
this need belng connected with the need of special statistical analysils

R adiiot 4

of experimental data. Several experiments actually have been conducted,
others are in progress, and they permit specification of the description
of unsteady effects. They also permit a little broader discussion of
the validity of available celculation methods.

¥Numbers in the margin indicate pagination in the foreign text.
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Before describing these studles, we think 1t useful to recall some
results on laminar boundary layers, which assist In understanding some
aspects of the unsteadiness of the flow,

2. Laminar Flow

While the equations of unsfeady lamlnary boundary layers are knowh
with great certainty, the understanding and analysis of scme questions
have only recently been elucidated, in particular, bty the use of asymp-
totliec expansion methods.

The best known flows are osclllating flows, in which the average
veloclty can be zero or nonzero, Before describing the main results for
these f'lows, 1t 1s advisable to stress some precautions to be taken,
before using the classical boundary layer equations.

2.1, Boundary Layer Egquations (Incompressible)

The Navier-Stokes equatlons quite c¢learly are the fundamental
equations. In everything which follows, we are intested mainly in in-
compressible flows, and this restriction implies conditions [Lighthill,
43, 447. 1In isothermal flow, the two principal conditions are: 1. Mach
number a llttle less than one; 2. the acoustical wavelength associated
with characteristic frequency w should be large, with respect to char-
acteristic dimension L. of the system. With v as the characteristic
veloclty and c¢, the speed of sound, these conditions are described by

/e & 4 wh /e < 4

In this case, the fundamental equations are:

i (1)
Eri
Wi oo oo 43Py YW (2)
Y d % e dax >oef
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Discugssion of the validity of the classical boundary layer equa-
tions, namely,

M o
bm‘\'-é—gh_a (3)
D B .S 4 OP 0,
5t 5x ”ay”(r";*“"*“gz ()
% .o
a‘a =~ (5)

often brings numerous parameters into play in the unsteady case. We
illustrate this with the simple case of a body of characteristic dimen-
sion L, located in a fluld oscillating at frequency w. UO ls a typlcal
magnitude of the amplitude of the veloclty variation, and we shall see
that the order of magnitude of the thickness of the viscous layer 1s
(v/w)l/e. It uses a system of axes connected to the wall, and it in-
troduces the follcwing dimensionless quantities:

Ve %/CMJW Tz wt Xz /L
Vi oAy epfputi

Vs ow/y,

Disregarding all effects of curvature, the two dimensional Navler-

Stokes equations become

W g (6)
) ox 2y
W, U (u“U *V>u>_ IR AY
2t WL \TEX T By /xRt ey
7V RSy (")
B L Ws (Y av> WA v BV Y
b e (Vs g Ve Jaam — g o
3t wL( X LV v By wit 2% ayl (8)

It then is clear that the solution of the problem brings into play

two parameters: the Strouhal number mL/UO and the frequency parameter

mL2/v In particular, it is noted that, if mLa/v is not large enough,
82U term (Eq. 7) can be nonnegligible, and the classical boundary

2
ox

layer equations are no longer applicable.
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In some cases, only longitudinal length L 1s not sufflelent to
characterize the problem. For example, 1f the flow ls perturbed by
a progressive wave, the phase velocity of which 15 Q, 1t 1s seen that
discussion of the valldity of the boundary layer equations brings in the
ratio of the wavelength Q/w to the thlckness § of the boundary layer.

Therefore, by means of these examples, 1t 1s seen that the Reynolds
number is not, as 1t often 1s the steady state case, the determining
parameter, and that each problem requires detalled determinatlan of the
orders of magnhitude of the varilous terms which appear in the equations.

2.2, Oscillation with Zero Average Flow

2.2.1. Stokes Solution

The simplest case of an unsteady boundary layer 1s that of a
parallel flow (v = 0) oscillating around an average zero. Besldes, 1t
concerns an exact solution of the Navier-Stokes equations, which i1s
reduced simply to

bu o e, v EU (9)
Y 2yt

With the conditions at the limits,

u = 0 y = 0
W e ue'_.:u“caswl: Y mor 00

The solution found, as a function of reduced variable §=y(w/2v)l/2,

is written

Al

Y - cos wt . e,'g 0% (wt-%)

—

U
te (10)
or 2 o Y cos (wt + )
U{o UA@
it A~ "'"zc.' Ali
with Yo (4o 8T we *)
Wie

{%,Mng
atgf n =9

4-ed c,osg




The reduced amplitude Ul/Ule and phase ¢ profilles are precented in
Fig. L. An excess of amplitude in the boundary layer, wlth respect to
the exterior, is noted. A large phase shift also is noted near the wall.
At y = 0, the limiting velocity, il.e., also friction, is before n/H.

This vroblem can be consider-
ed 1n a slightly different manner,

| by finding the perturbation pro-
r Py duced by an infinlte osclllating

’“’4,,/”’, ‘\\\\\ plate in a flow at rest. Then,

o Aulbu, ! 0 45 e P1) the conditions at the limit are

8 = 5 Y29/ 6o = 6 Yvx/U Uz Ly tos ot Y=o

8, . [ L\I2 wx dows Uozo — OO
, ol o) Sw = 4 9
‘ and the solution 1is written
i Fig. 1. Stokes problem. 8 .
j g P Yoo e c.os(wk—.%)

[

Thus, the oscillation of the plate creates a wave in the flow which
vanishes at infinity, the phase velocity of which is (2wv)l/2.

: 2.2.2. Secondary Flow Induced by Oscillating Movement (Steady
- Streaming)

When a body oscillates around a fixed position in a fluid at rest,
it creates a secondary, stationary flow.

Stuart has studied this problem in a reference system connected to
the wall. The external velocity 1s in the form

U, = Au,cosut ' :
parallel flow w Practically, 1t can be /3
) consldered that the thickness

U 5 U, Ly 0y A
Y M dy? of the Stokes layer, 1s on the
ney|L order of 5 (2y/u)*/2. When the

v §§-=l®“ﬁnmz~ﬂ~e“ﬂﬁMW” freqguency increases, the unsteady
U = 8ucos{ul v ) 1 ersin effects due to viscosity are con-

gvTTT:EHcosn fined to a thinner and thinner
layer.
5 5
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The shear layer whilch develops at the wall 1s analogous to a Stokes
layer, and 1t can be studied by means of the following reduced variables

U Uwv -8 ‘?L \agg{r)/w}m

b (l'y/w % (Y 1s the current function).

If sz/v 1s large, the solution 1ls calculated by means of the
classlcal boundary layer equations.

The dimensionless equations bring out the Strouhal number S=qL/v
and, if this number i1s very large, the solutlion is found, by means of
an expansion, as a function of the powers of its inverse a=s"1 (43, 447:

e 4% (L@ et R et
o ol [ ‘;(s(ug'%) . ;_('Xz it 7, e.'““’b)]‘ o) (11)

In the 0 order, the solution 1s classical. It is that of Stokes:

\

In order o, the solution 1ls more noteworthy, for stationary
component Xs is not zero:
i 1te R
7?: %w[ 3~Q}ﬁ 3+1e:am%

“ (13)

Bt . A7 e (s sind
+Ee cosf - 25 (&ﬁ%.&hﬁ)]

This secondary stationary movement is induced by nonlinear effects,
due to the convection terms of the equation of motion.

In order o, these terms bring out quadratic quantitiles, such as
sinzwt, the time average of which is not zero and which necessarily gives

rise to a stationary velocity.
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It 1s noted that the veloclty induced at the boundary of the Stokes
layer (¥»=) 1s nonzero. It is

3 9 :
Us-‘-'"m Yo %:i (131)

Thus, the problem is to determine how the average veloclity becomes
zero on the exterlor of the Stokes layer. Two cases are distinguilshed,
according to the order of magnitude of the Reynolds number R =U 2/%v (this
Reynolds number igs madc up of the order of magnitude of U given by
formula 13', UnU, 2/oL and of the characteristic length L)

If R >>1 (Fig. 2), a boundary layer, in the very classical sence
of the term, develops below the Stokes layer, and its thilckness 6 is
on the order of 1,/2 /2 =L (g )l/ /Ue. The ratio of §  to thickne5°

w(v/m)l/z of the Stokes layer is on the order of L(wv)vz/(v/w)l/2
= mL/U°° =S, It is very much greater than 1. If R U“iu on the order
of 1 or less than 1, the external layer is of a different nature., It

should be studied, by using the linear Stokes equations of slow move-
ment. '

2.3. Oscilllation with Nongzero
Average Flow.

When the boundary layer
develops in the presence of an
external flow oscillating around
an average nonzero UO, two solu-
tions play a fundamental part:
the Blasius solution and the Stokes
solution (Fig. 3). If the .thick-
nesses of these two layers are of
the same order of magnitude, the
Stokes layer i1s fused into the

Fig. 2. Oscillating circular stationary layer, but, if the
cylinder. thickness of the Stokes layer is
much less, 1t preserves 1ts indilvidual nature. Now, the thickness ratio

of these t£wo layers 1s
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The order of maghlitude of the Strouhal number, therefore, is a funda-

mental parameter  in definition of the struecture of the boundary layer

in such a4 case.

y Ue = U, oy, 500wt

Mﬂ‘
v (mﬂ”’-""’rﬁm i
, Blasws  § ¢ Xt
//1) I * ﬁ?{
{ (
{if ' Stokes 10yor & edv)”

by

The analytieal solutilons of /4
this problem generally have been
found, on the assumptlon that the
external veloelty fluetuasion i1s
small

Fig. 3. Osclllating flow on flat Upz Uy, (44 £6Y) yighe <4 (14)
plate (laminar).
The conditilons at the limits are:
& E e o lé =0 x >0
Al -g-Ua %snﬂ
M o= U ~on 0 Y >o

The solutlon was found [Lighthill, 37], by expanding the velocity
by powers of e. By introducing the reduced varilables

~

Az wt &z a0, %/: %(MHTI!

and the reduced current function

e A}
Y = (w/v%ﬁ)"&l;
the first order solution has the form

~” 92)4/: F L/E
Pe aFLF 2 (15)

If the Reynolds number UO x/v 1ls large enough, solution F is the
Blasius function Fb a function® of n=UQ [UO x\l/e alone.
X v
In order €, solution f can be determined numerically, whatever the
reduced frequency ¥ [45-48]. However, analytical solutions are available




o
for extreme valueo of X.

y \
When x 1o omall, £ 1o expanded by the powers of %, The solution
hap the form
A NETE I NC)
'f " me ('2‘ 'FM(? (16)
where f) 1o the golution of a differential equation which uses £, 5.
FPor n=0, a quapsilotatlonary boundary solution 1o obtained (?4@).
fo is obtalned by writing that Blasius funetilon Fb 1s the golution at
each inctant., The utilizatlon of expression (14) for U, and expansion
by a small perturbatlon results in

. “ b AF
L) B e an
therefore, {, ..;Z, %’

When the Strouhal number is large, the boundary layer has a two
layer structure. Near the wall, a shear layer of the Stokes layer type
develops. Its thickness 1s on the order of (v/w)l/a. This internal
swlution 1s a functlon of yuy(m/v)l/Q, and it 1s written

f*[i o Meapt-tar S IE) - )] f2) L 0c71) (18)
The prinecipal term 1s the Stokes solution.

The external layer has a thilckness on the order of x/(Uex/v)l/g,
and 1lts solutlon 1ls found, as a functilon of ?"%‘U%%fm .
It is written

Do mocahad)® o L (F L qF e . 0(3*) (19)

Flgs. 4 and 5 give some summary results. Evolution of the depth
of displacement and wall friction and solutions for intermedlate values
of the Strouhal number have been obtailned numerically [45-47]. 1In
particular, it is noted that the phase of the coefflclent of friection

9
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tendo toward hﬁg, while x/U,
tendo towards infinity, as  ©
in the Stokeo celution, It aloo

Ue =Uo (14 esin wt)

el 8y =8y [1s 2 sin(uispen))

10 38 1o noted that, when the Strouhal
i - e 1o large, the external reglon of
T et X the boundary layer ic subjected
0 ! ! J to pulcatlon ac a unit, when
1 10 100 e O lerso n vy b
9 the Stokes layer is very thin,
40%. Selution (189), in faet, shows
200* that, in thisc area, there is
. Loe Loy » & Yoo sinwt
0 ; | B e | Us U, 4 & Yo Siv whk
01 1 10 100
522& ansequently, product
lJO §4U=/0o (UQ-U)dy remains conctant
over time, for the very cmall
Fig, M& Oscil%atinglflog on glat region in the vieinity of the
plate (laminar); amplitude and phace ‘ ftle .
of 6, (from [291). wall contributes little to 6y

- This explalns the behavior of
the amplitude and phace of §, for large values of mx/Uce.

In order ea, a stationary term M, appears in the solution. If
numb ers Rs=(vw/002)l/2 and 32 Ro=e'UoL/v are close to one, the boundary
layer equatiocns are applicable to calculation of Mg [(45-477, With
avallable experimental and numerilcal results taken intc account, it
appears that these secondary velocltlegs are small, even for large smpli-
tude external velocltles. If thilc sc, an important simplification re-
sults, since the average proflle i1s the clossical solution of the sta-
tionary equations. Sometlmes, wilth an average pressure gradlent, espe-
clally in the viecinity of the separation, the secondary velocitles can
become Important.

2.4, Effect of Phase Veloecity

The response of the boundary layer to a perturbatlon in the form

Up = U, + Uy, sin w(&.%) (20)

10
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200!‘ U, = Up (1e csin wt)
- T e )
o T ..rO[bc.‘.‘; .alsztom]
6 (4 i i o
0 1 2 3 WX
Uo
Fig. Y. Ocecillating flow on flat

plate (laminar); amplitude and
phase of wall friction (from {29,
U5-471),

o u-

Ty oy

S s -
P A ok adhen/snh ~dh adiunduand -~
-'n_-._..._j..,._,_._‘_d (.7

TEO AR o ot 2t g

Fig., 6. Experimental assembly
used by M.,H. Patel; the laminapr
boundary layer wag studled on
auxillary plate a.

amplitude becomes not so much more than 1, around 1l.1l.

valves of wx/U, ,
e

depends grectly on the opeed of
eonveetien of the wave . MLE,
Poteld Lae dene an experimental
gtudy, by produeing a pyotem ef
cddiecs eceaping from o owilnging
shutter (Fig. 6). Loeated in the
flow ot veloelty UO, the ecudlen
move by eonveetlon at veloelty Q=
0.77 Uy,

In the firot erder, the responce
of the boundary layer to the per-
turbatloir 4o in the form

Uz Up s Uy sinf ol %3*‘{’) (21)

The experimental results indi-
cate thot the profile of continvouc
component UO/UOQ is not affeeted
by the oselllation., It remains a
Blasiuc profile (er i independent
of x). Actually, cven if there werc
nonlinear effects, they would be
very weak, for the reduced amplitude
lo 104 at most.

The Ul/Ule amplitude and phase
¢ proflles have some pecullarities,
especlally around Strouhal numbers
wx/Uo in the vieinity of 1 . The
ampli%ude has valuegs very clearly
higher than 1, on the order of 1.6
(Fig. 7), while, in the case de~
scribed in the preceding section
(which corresponds to Qr»), the
For some

the amplitude profile, moreover, has values clearly

11
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less than 1 toward the outslde of the boundary layer. The theoretilcal
elements developed by Patel, whilch are an extension of the methods of
Lighthlill, are vallid for extreme values of the Strouhal number (mx/Uoé+O
and mx/UOe+w), do not allow explanation of these pecullarities. ‘ccord-
ing to Patel, they must be assoclated with the faet that, when wx/Ug =
0(1), the inertial and frequency terms are of the same order of magnitude.
Up = Ugg +Us sino(t-£) The phase profiles indicate
that the veloeclty in the boundary

U =U, +U, 55"[‘*’(‘-% +9] layer always is slower than the

(iing Q=0.77U, external veloclty.
Uet 1. 1
1' ) 2 Two paramekers compete to
80 EEEme—— é —— = WX determine the phase distribution:
Dyo | =~ Uo veloelty U, and pressure gradient
- '\ 1. low frequency sol. -l 9P. Now, the expregsion for
10 ‘."90 2, high frequency sol. g ox
- this gradient is
01 M — |
- ' 130 N U Uee
] F. S‘; - -é»-é- + UQ_ »-—-E jod Q)U‘C("a 6—)6(5“)(6.2)

Fig. 7. Laminar boundary layer v oL
of flat plate perturbed by a pro- -y g sindw(t. 7y (22)
gressive wave (from [33-36]).

At low Strouhal numbers, the /6
veloclity parameter prevaills. The behavior of the boundary layer tends
to become quasistationary, and the phase gshifts are small. When
®w increases, the pressure gradient parameter becomes large (Eq. 22).
If Ule/er 1s small enough, the first term on the right side of (22) is
dominant and, when convection veloclty Q is smaller than UO, the pressure
gradient term lags 90o behind Ue' Besides, the interior of the boundary
layer 1s more sensitive to the pressure gradient than the exterior,
since the inertia 1s less. Therefore, this explains the negative phase
shift values. This same reasoning explains why 1t 1s not paradoxical
that the phase shilft 1s positive when Q+» (see Section 3.3).

A singular situation results when Q=Uo, for the pressure gradient
is zerec in the first order. The solution proposed by Patel, for large
values of mx/er, effectively indicates a change in behavior of the
amplitude and phase profiles around Q=U (Fig. 8).

12




UQ = an ¢U" S'n u(t-—a-)

U =U oY, sin[m(t...é).tb]

50
~100¢]
-150%

Fig. 8. Effect of wave convec-
tion veloecity (from [33-~36]. High
frequency theory wx/Ue =5).

o

3. Turbulent Flow

3.1. Experimental Results

In turbulent flow, under-
standing of unsteady effects is
much less advanced than in laminar
flow. The experimental efforts have
concerned some particular points.
Several studies have been devoted to
oscillating flow around an average
zero, with the effect of wall rough-
ness. These studies often have been
motivated by shear wave problems in
the depths of the sea [21, 22]. The
effect of pulsation on a boundary
layer of a flat plate also has been
studied [9, 23, 20, 11], but system-
atic analysis of the various paramets
which can affect the structure of the
turbulence is still far from being
achleved. In continuing study of
laminar flow, M.H. Patel also has

carried out an experiment in turbulent flow, on the effect of the phase
velocity of the perturbation wave but, there also, the field of study
remains largely open. Finally, very recently, several studies have been
directed towards the effect of an average pressure gradient [3, 12-15,

24, 38, 41].

3.1L.1. Oscillation Around an Average Zero

In Europe, studles of a turbulent boundary layer induced by oscll-
lation imposed on the flow have evolved mainly in Denmark since the
1960s. Recently, Jonsson published an article which focuses on the
group of studies carried out at the Technical University of Denmark.
There, he also presents some outside results. The aim of the analysis
is to demonstrate the existence of universal relations for the velocity

13
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profiles, and to establish practical rules, especially for the coef-
ficlent of friction. The results are mainly for & rough wall,

Accordingly, Johsson was interested in flows, for which the exterior
velocity 1s in the form

Ue = u!e_ cos wt

(23)

In the boundary layer, at the flrst harmonle, it is written

V= U, c.o.s(w’:-»‘f)
(24)

We note that, since the flow 1s turbulent, it 1s advisable to
define the average u correctly. Thils velocity ls the average of a
set and, when the flow 1is perlodie, 1t also can be the phase average.
Therefore, w ls an average of the instantaneous values recorded in
different cycles, for the same phase angle wt within 2rw.

Jonsgson studied a deflclt veloceilty, which he deflined in complex
form:

. X " (b T
Ud. - U4 Qk(u,h W- UAQQ‘WP‘J UAd E‘ldw T ‘{‘Q ( 25)
Tu
Uiy
u” W
e ,
v Ve, Rz (velocity)

In a stationary turbulent boundary layer, conclusive progress has
been made, due to the existence of a recovery region, where the velocity
changes logarithmically. Under rough conditions, the rule of the wall
is found by using the following reduced variables

L[ Uy and Y4 /h
where Ur is the friction velocity, Ur=Ue(Cf/2)l/2, and k is the height
of the roughness.

Jonsson attempted to verify such a logarithmic rule, by consider- /7

ing veloclty U and friction velocity Ur at the same instant.

14
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ORIGINAT:
The friection veloelty was determined from measurement of the
veloclty profile and by means of the summary equation of the mo- |
mentum. This equation is quite simple. It results from the local
equation which, in the case of parallel flow, 1s written 1

(26)
and it takes the form (27)
{or
]
|
i
'%
E
:
;
wt
o2
u/u,

‘ -2 i ) |
| 10 ;5 5 {0 {5
; Fig. 9. Turbulent boundary layer oscillating
; around an average zero (from [21]). 15 '
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Fig. 9 shows that, during a large part of the perlod, the measure-
ments are grouped around the same curve ag in statlonary rough flow, of
the equation U/U =5.75 log(30y/k). Large deviatilons develop in the
nelghborhood of times when Ue 1lg nullifiled.

Determination of the eddy viscosity Vi, shows that, in these same
periods, Vi has negatlve values, because of the inertla of turbulent

friction -p<u'v'> , with respect to the constraint 5U. Meanwhile, these
oy
perlods remain quite limlted and, for practical calculations, the utili-

zatlon of a hypothesis of eddy viscoslty should not be rejected a
priori. In any case, 1t must be noted that the frequency imposed on

the flow remalns low wlth respect to the estimate whilch can be made of
a characteristic frequency of the turbulence. This can explain why some
classical results of statlonary flow remain valld.

In a less convineing way, Jonsgon also establlishes the eristence of
a universal rule of deflcit velocity, in the form

UACL,UZ'W = €1(g,&)

(b ls, by convention, the closest point of the wall, where the maximum

velocity equals the maximum external velocity).

The existence of such a rule and of the rule of the wall, in the /8

form U/ur=fl(y/k), implies that of a rule of logarithmic recovery.
Jonsson proposes

21: 5,75 208(/\.4'55}@)

The extent of the recovery zone diminishes, when the ratio of the
amplitude of the movement to the outside ale=Ule/w to the height of the
roughness k decreases. Thls zone disappears, for values of ale/k on the
order of 30.

It also must be noted that the existence of a rule of the wall
U/Ur=f1(y/k) implies that the phase shift of the veloeity in this region
remains constant. In fact, 1t is enough to allow that Ur 1ls in the form
Ur=Urm°°S(wt+¢o)’ and thg following 1s obtained

U= Ug,, 24(3[&\) C,os(wtnfo)
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Experiment shows that, in the recovery region, the phase shift
remaing quite constant, but i1t appearr to evolve in the viscous reglon
under the layer. This then deniles the existence of a rigorously unil-
versal rule in this underlying layer.

In order to permit complete construction of the veloeity amplitude
and phase proflle, Jonsson found a reprecsentation of the phase profile
of the deficit velocity ¢d‘ He proposes

fo= 2"

Practical rules likewise have been proposed for the parietal coef-

ficient of friction and the boundary layer thickness b. For thickness b,
he proposes, under rough conditilons,

4 2 c.072 (ad, %)V“

Two conditions are distinguished for the cocefficient of frietion

g.f_”:‘. <A4,6 &:"L > 0.25 o 0.3
M P Yie
Ga >k Corae 00605

e U,: ] 103" 21%—»

Jonsson also has proposed formulas for the smooth condition

Bprer - 0,09 7 Rez Yuelee
pUL v
'&. - 0,0466 C'ZJ - ..82'...
a.,b RO,A T W

€

3.1.2. Oscillation Arcund an Average Nonzero Constant

In this section, we are Interested mainly in the case of a boundary

layer of a flat plate, perturbed by & sinusoildal oscillation of the
external flow

Up = Upy » Uy, o8 wt

(28)
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At the first harmonic, the velocity in the bhoundary layer 1g in the

form
U = Y » U COS(wl‘;CF) $onr
(29)

As in Section 3.1.1., U is the average cf the set of lnstantaneous
velocities., The difference between the lnstantaneous veloclty and the
average of the set is the turbulent fluctuation u'., The moments, also
defined by the averages of the set, are designated <u'2>, <u'3>, and
the turbulernt pressure 1s -p<u'v'>,

This problem is the baslc circumstance of numerous practical situa-
tions, and many numerical soluticns have been proposed over several
years. For a long time, the only supporting experiments were those of
Xarlsson. Recently, others have published [9, 20, 11, 12]. The table
below gives the principal characteristics of the various cases studled.

In this table, X designates the distance of the plate on which the
boundary layer is studiled to the leading edge or, in the experiments of
Houdeville et al and Cousteix et al, the distance from the flctitious
origin of the boundary layer, calculated from the experimental data, on

the assumpbtion that the average characteristics (in time) of the boundary

layer obey the stationary laws of the flat plate. A characteristic

18




frequency of the turbulence has been defined by fT=u'/6 s where u' 1o
a characteristic veloclty of the turbulence, for example, YUT2,

In the experiments of Karlsson, the measurements provide average ‘
veloclty profilles U and profiles of 1n phase compenents U1009¢ and out
of phase components Uluin¢. The experiments of Charnay and Melinand
glve profilles of the average veloelty, the average of the set U at
different lInstance of time in the period and some longitudinal and
transverse turbulence Intensity profiles, In thc experiments we have
performed, we measured the profiles of the average veloelty U, which
are analyzed by means of harmonic decompocitlion, and we reported the Uo,
Ul and ¢ profiles., Profiles of the longitudinal intensity of the
4 turbulence <u'a 172 and turbulent precgure -p<u'v'> also were reported.
Ef The density of probabilities of u' also was determined, as well as the

cblateness factor F= <u'u>/<u2>2

|
L
| Average Velocity Profiles
)
r

The most evident conclusion of the experiments of Karlsson and /9
our experiments 1ls that the average velocity profile U, 1s practically
unaffected by the unsteady nature of the flow. However, 1t seems that

s the experiments of Charnay and Melinand contradict these observations.

i They particularly indicate an amplitude effect. Actually, for a

Upq /U, of 0.2 (£=18.5 Hz), the average velocity profiles clearly are
different ("squarer") than those obtained for Ul /U e<O .11. TFor this
same value of the reduced amplitude, an 80% increase over the station-
ary case of the average thickness of the boundary layer has been measured,
as well as a 15% increase in the coefficient of parietal friction

(X=0.9 m, £=18.5 Hz). The observed effects on the average properties

of the boundary layer seem all the more surprising, that the experimental
condltionsg are approximately in the range of those studied by Karlsson.

|

In any event, if the effect of a turbulent perturbation of the
external flow [2, 8] and that of a harmonic perturbation are compared,
as Charnay and Melinand note, the effectiveness of the latter on the
average characteristics i1s very weak. The fundamentel differences be-
tween the two types of perturbation must be emphasiuzed. In one case, the

19
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energy ioc distributed in a speetrum scimilar te that of turbulence, and
1t ig a band in the other. We note that, in some cases studled hy
Karlsson, the frequency of the perturbation between the renge of char-
acteristic frequencles of the turbulcnce and the cffect on the sverage
profiles is not so large. The tridimensional and unidireectional
natures of these two types of perturbation also must be compared.

Perturbgtion and Phase Amplitude

Qualitatively, the amplitude profiles we obtained and those of
Karlsson have the same trend (Figs. 10, 11). In particular, they
exceed the outer value in the external region of the btoundary layer.
These excesses can be on the order of 15 to 20%. When the Strouhal
number increases, a layer similar to the Stokes laminar layer develops,
of less and less thickness in the vicinity of the wall, and in which the
amplitude variations are confined.

U m/s)
] 50 4
Y(mm) [ f 40 Conf. 2 Y tmrm)
fo /- R SO W L. 71
f f 1C1]16 (310" | 034

i. C2[46 12 0° | 037
']

§ - 0 t/T wwie | ?
g 5 -
\\\ o Corviiguration 1 Jf /§
S o Configuraton :j ff
! 1
0 O “___‘,J, _4,.,,.3 /A

Q‘-——)"rg & A e

0 § 0T 15 0 WAL o5y
U9= UMC‘ ¢ Um singt
U=Uy »U sinwt +Up; costt 4.,

=Uy +AU sn(wte9) ...,

Fig. 10, Turbulent boundary layer in oscillating flow.
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Plg. 1l. Turbulent boundary layer in
oselileting flow: Uy /Uq =3U.4%—mx/Uo=

3.92-—Rex=0.88-106 (frém [23]).

The phase ¢ profiles are not given explicltly in the article of
Karlsson, but they can be determinec frcm the In phase component
U,cosd and the cut of phase component Ulsin¢ profiles, With the scale
on which these data are reproduced taken into account, geope dInaccuracy
results from these analyses. Meanwhlle, 1t appears that the results we
obtained completely corfirm these interpretations. Generally, 1t is
observed that the phase 1ls positive in a zone near the wall. As in
laminar flow, this can be explained by the fact that the pressure gradient
leads the external veloclty by 90°, and that the less Inert boundary
layer in the vicinility of the wall responds more rapldly than the external
flow. Toward the ocutslde, significant negative values have been measured
for some Strouhal numbers: 2.95, 3.92, 5.89 [23], 4.6 [11, 12]. For the
other Strouhal numbers studled, the recorded values of ¢ toward the out-
side are generally within the experimental error. Similar observations
have been made in laminar flow (measurements of Hill and Sterning, cal-
culations of Farn, Arpaci and Clark). As a function of the Strouhal /10
number, the lag cf the phase maximum in the boundary layer ls at a
maximum for values of wx/Uo, on the order of 2.5-3.5.

It also is noted that variations of ¢ are established in a zone,
which becomes fthinner when the Strouhal number increases. At large
Strouvhal numbers, the outslide of the boundary layer pulses as a unit.

The phase shift is very small, and the amplitude 1lg very close to the

external wvalue.
21
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Phase shift Relatlon Near the Wall

Finally, 1t ic neted that the phase near the wall has a moaximurp l
and decreases ot lewer volues of y. Tt lo noted that the cxistence of
a legarithmic recovery region implies that tre phase shift must be
congtant end equal to ite velue at tre wall [H1]. It alse can ke shown
herv, by ascuming that there 78 a univercal rule near the wall, in the

form
= f0) |
(0)
(2t e, y* gub/‘»’ Mz,.uc(‘-‘f’:.))

For thic, we use the follewing complex rotatilene

wt
(«(0. - Uo,' - u-le_ c"w 4’).
Y . % . %, et % (4
- .:wb

e oz Ue & M4 €

with U Ce? Ul s Yy Up  actua vl oerd yq and U, ccemplex., By ass uming P ele
: , Yy ur.u U are small comparec be U 5oy, Lnd V » the rule U =
c.
f(y ) can be developcd, and the followlng are obtainad

e f( %on.Jz

YOUQ (31)

Uy = Y0, (e, ( Jule ‘i‘:’liﬁ)
! e Loc To)f '/) Y d\d (32)
Formula (32) indicates that the phase ¢ of u is Indeperaelt of
y. 1t 1ls such that
L YJ Ve,
/ig(f_ I ( u..)

- v
Q (1 n . jiﬁ

Therefore, 1t is equal to the phase of YUe=(rp/p)l/2 and therefore, to
that of tre wall fricticn ep.

This conclusion is compatible with experimeni, orly in the reglon
where the phase passes ibe maxinum, cnd 1t can be thought that the
interpretation of the verlation of ¢ very clcse to the wall requlres
sharper analysis of the vircone underlyirg layer.
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Meanwhlile, 4t ool be neted that the maximun of ¢ ceeurs in a regicn
whers the loparithmle rule io ectabliched dn ctotionuary fiow (exeopt for
extreme very high values of the Slrcuvhal nurber ctréfcod by Foricoon,
Depa Ll S=77,07). We gront that dhe stotlenary rule remaing valid at
caeh Instant

vre b a"‘ w 5,25 heou
(33

Cn th~ sih e hand, simllardty solutdors brwve Leor extended te the
ursteady case, acsuming @ duficdd vescelty rule of the form (U, -U)/U,=
M y/8(x,t)), and by aceecpting o quaslstationary mixing length ceheme
F11}. It then is sheun thet frietion ean be ealevlated at ench Anstant,
by the relatlorchip

(Cotar ts A Ow tebe, D7(6) (34)
kS EY 'Y
with G - Haodd H o j&u
H (cpin)™2
and D QG . 425G, 2,48

A small perturkatior hypcthesls 1p then mede, end 1t 1s written,
in complex retation

Ve Uy 4 Wy aiwt
Le = Voo, = Lie C‘.‘w&
Yo f oY, aéwt’
S.A = :au + SA,, E.!:wk
H = Ho + H, ﬂ,‘“’b
0 = 6,, +* 94 QCU&

The expansion of relationships (32) ard (34) then leads to

Ay - (D)5, 5mf, ~DAgsinfy (3%)
T Cad w (C+w)A§‘ccst{!$4-3)A9mS‘f>9

with L 435 Hﬁ:‘ - Cs .F.!.
A - ( a K q;!/z) M, - &A

- 415\ d D . .2

SRR AR
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ba arl ¢@ ure phroty ¢t &l Ohia 0, ﬁ§1 und AO G e ampliltudes

ef §, ard 0, reduccd by the crplliiaee of UP°

| Sul /8, Yl /0
A 54 P, wumxﬁw?a A 9 f: wm»—vzafv
de £ By Ui/ Vo

The right hane term ef Eq, (3£) ean be deternined from expeylmcrtal
dava., The value whielh the veleelty rhroe sheuld have in the logarithmic
reglen thonh 1o aetermiped. Thisc phave gheald correspend te¢ the maxinun
naiue deternined experimentully, which alene ic cempatible with
the theeretleai recult of ¢megte.

Cemparicen of the theoretieal voluers Jwin determined with the
experimental, values o proeentod In Pig. W The results ¢f Karlosen,
unfortunslely, could net be uncd, hecaupe the informesion 1o inguffi-
clent to caleulate the right hand term of (38), Our results hove heen
rletted in Fig. 12 [20, 11, 12]. Likewipe, thoce obtained with cn
aversge prescure groediont [12-15] and those of MJH. Patel, whe has
studied the effcect of thie conveetlon velaclty of the perturboetion wave,
aloc have been plotted, The resulting agroecment is altogether good, evern
for velatively high values of the Sircubal number, on the order of € to 7.
meaoured value

Effect on Turbu.er.ece Charactel-
otidcy

soe.iﬂ /

e In the experinertis of L1],
U ou b, « U, sinfuteny,) Karleson, only the average tine
U =Us «Us sin(utepy) (iﬁz?“lﬁigfm' value o% the interslty of the
”“'w/;”‘ turbulence was measurved. It
t ! - ic impossible to detect a pes--
-50° 0 calmﬂﬂgga slble effect of frequency on
o value (ig. 35 thege profiles, espceilally with
% the experimental error and the
o ~50%0. fact that hilpgher crder Low-

4 COUSTEIX . DESORPER « HOUCLYILLE (b)
@ W COUSTEIX . KOUDEVILLE (1)
o M.H PATEL ()

menies then 1 are included in
the measurement talien into
account.

Flg., 12, Verifleetlon of propered re-

iationghip for phase ghift ¢ in the
senmllogardithmlic region.
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Phe worlk of Chayney and [leltnand invelved rtudy o tho (o Lenhde
nry anG the veleettleo en the inoide and outpldde ef the turbuient burgto,
1t 1o evident that, for the sctationury ecce, the indentatlonr ef the
boundGary wre deeper ond thot, prebably, the origin of the burcto 1o deep=
cp Angide the boundory lapor, Urroptuncotely, thic sctudy 1o of toc
summary o nature, fer ancdycdc ac a funetien of the phaoe hap net becon
carried cut cnd, urder these eonditiong, 1t Lo difflevlt to malie &
dilctinetion betweer the forced vearlations impered en the free houndary
by the pulcation of the flow and its random variotlor, wbicl prebably
Io a funetlen of the phace,

dore wethiled meararemrento of the behavier of certein turbulent
quantiticec have been reported by Coustedix ot 4l, malnly in the cecond
eonfiguratien, which ecrresponds te the highect Stroukti number.
Meacurenents of the correlotion cocfficient -au‘v'»/(au'paav'2>)l/a,
whieh have an inportant rele in medeling turbulence, have been carried
out, ‘They chow that thic cocfflcient evelves in the ceme way as in a
stationary Loundery loyer (Fig., 12), HNear the wall, within the measure-
ment ceeor, 1t can be considered that it Lo censtant, with 2 value on
the order ¢ 0.U5-C.L, Turbulent prescure meacuremente alcce have per-
mitted Geterminaticn of the experimental developrent ¢f the nizirg
length zm(-<u'v'>)l/2/aq. This operaticr iAo ¢ tit crivieal, for It
reguires caleulation o?ythe dertvative 3U/0y. however, it showe that,
in the entire perilod, the mixzing iength evolves in the beundary layer
in & very classical marner, except in o zene leocated dr the viedrdty of
ihe external veloedty maximum, where larece variations are noted (Fig, i4).

It aloso jdg of dntcereost te analyze the evolution of the oblatenepu PN

factor F=<u'u>/<u'2>2, especlally 1f 1t 1e interpreted as discontinuity
factor y, by using the relatlonghip y=3/F, We recall that vy, in unsteady
flow, iz a functlcer of vhe digtributlon c¢f the free boundary of the
boundary layer. %he y(y) curve (Fig. 15) depends on phage, and this
dependence eesentlally expreecses the lorced variation ¢f tke beundary
layer thickness. Actually, 1f y 1o plotted at Yy=0,5 (the value of y

for which vy=0.5), all the points are grouped, and they form a curve sim-
1lar to that given by Kleboneff, in the cese of the glatlonsry beoundary
layer of a flat plate, This tends to shew that the purely random
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varlation of the frec btoundary
. not af'ffeeted by the unsteady
nature of the flow.

Other measurenerits reported
in detell by others [11, 12]
tend to indlcate a quasl-
statilenary behavior of the tup-
bulence. However, it must be
noted that the measuremerts were
made under conditions, such that
the frecuency imposed 1s quite
clearly less than the character-
istic frequency of the turbulence
fT‘

An estlimate can be made of
the condlvions under which these
two frequencies are of the sare
order of meonitude. A charac-
teristlc frequency of the tur.-
bulence ig fT=u‘/8, where u' is
a characteristic veloclty cof
the turbulence, for example,
(u%) 172 1% con be estimated
that the order of magnitucde of
u'® 1s given by (rp/p)/0.3
(it 1s assumed that, near the
wall, mu'v'=0.3u'2). By using
the flat plate formulas Cf=
O.O368/P.XJ‘/6 snd S/XmC.QS/Rxl/6,
it is found that fp/fv2rR /2,5,

I
of magnitude, if S—'~'27rRX

arnd £ are of the same onder
1/12.

For Reynolds numbers of 106 to
107, this conditlon is satisfliec
for very high Strouhal numbers,
on the order <f 20. Under such
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conditiong, unsteady effects develcep
mainly in the underlyilng layer, and

the bursting phenowener cen be affected.
For higher freoquenciesn, it can L

asked whether a frequency does not
exlet, beyond which the unsgteady ef-
feetg on turbulence become very weak
since, then, the unsteady layer is
limited to an almcet purely laminar
zene near the wall,

3.1.3. Effect of Wave Convection
Veloclty

M.H. Patel [34-3€] has developed,
in turbulent flow, a study similar to
that degcribed for laminar flow in
Section 2.4. The external velocity
is in the form

Ug = Up, o U, sin w(t.%
with Q = 0,37 Uo,

The general conditions of the experiment are summarized in the

table below.

90%:'. p\x lg-":m/s

Ue| U |
mis1 Use !
19,8) 3 7%
to to:
TRANFAT

A

; ' i
Gzl 1,288 1,607 1,7.10%)
1,516 1,202 jof

1.745

cto .
4,911 !
‘ 55 Wz

to!
5,77 | 6!
2,221 2,3.10 {
9 l
[}

|
6,65 |

It ig noted that the imposed frequency is quite clearly different
from the characteristic frequency orf the turbulence.

The observed effects on the behavior of the average velocity,
amplitude and phase profiles are qualitatively the same as in laminar
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flow. The average veloclty profile is unchanged from the statlonary
case, The amplitude exceceds 1ts exterilor value (Fig. 17), and the re-
duced amplitude maximum Ul /Uo increases with the Strouhal number

(Fig. 16) (it 1s 1.77 for °S=6%65).

0 0 10 20 y;(mﬁj)
*
20° ° sot » F
40° whatr ¥ T2 Uy vU, sin w(t...é__)
U U=y U sin[w(t-_é)w]
1.5. U" . o+ 4 Q+= 0.77U, U'. =4,2%
:* + 2
1.0 M
i WX = 3,27
Uy
0 T 1 y
0 10 20 y(mm)

Fig. 16. Boundary layer of flat layer
perturbed by progressive wave (from
M.H. Patel). .

shift behavior: veloclty and pressure

It 1s noted that the
Strouhal numbers studled are
larger than those in the study
conducted of laminar flow, and
that the singular results ob-
tailned around S=1 were not ob-
served in turbulent flow.

As in laminar flow, the
phase shift in the boundary layer
always is negative (Fig. 17).
The absolute values of the phases
sometimes are smaller in turbulent
flow (Fig. 16). As was discussed
in Section 2.4, two parameters
come into play for the phase
gradient. Given that the tur-

bulent boundary layer 1s less sensitive to the pressure gradient than
a laminated boundary layer, 1t i1s logical that the phase shifts are
smaller than in a turbulent boundary layer.

T'inally, we note that, in a large

part of the boundary layer, ¢

remains nearly constant (Fig. 16). This result is completely com-
patible with the existence of a universal rule u+=f(y+) (see Section
3.1.2). We recall that the valueg of these phases were compared to the

theoretical values, calculated by Eq.

Likewlse, M.H. Patel measured the

(35) (Fig. 12).

longitudinal intensity of the

average turbulence over time. No effect of the pulsation was recorded.
Within experimental error, the profiles are ldentical to those of

stationary flow.
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U' = qu "Ug' Sin Q(tu..xd.)
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Fig. 17. Turbulent boundary layer of

flat plate perturbed by progressive
wave (from M.H. Patel).

3.1.4, Effect of Average
Unfavorable pressure grad-
lent

Several experiments now
are under way or planned, to
study the effect of pulsations
on a boundary layer expoged to
an average pressure gradilent
[38, M1, 22, 3, 12-15]. The
principal characteristics of
these experiments are summarized
in the table below
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In the above table, X=0 corresponds elther to the leading edge of
the plate on which the boundary layer was studled [24, 41], or to the
fletitious origin of the turbulent boundary layer, determined from the
experimental results at the flrst measurement statlon [38, 12-~15], or
estimated [3].

It 1s noted that the use of a hydraulic cell [3] 1s a good means of
easlly obtaining high Strouhal numbers and pulsation frequenciles, which
are In the range of the characteristlic frequencles of the turbulence.

In the experiments reported by Kenison, no unsteady effect was
noted on the evolution of the average characteristics of the boundary
layer over time: veloclty profiles; coefficlent of frictlon; density of
momentum; shape parameter, intensity of turbulence even in vicinity of
point Cf=0 (Fig. 18). Upstream from Cf=0, a zone develops, where the
velocity periodically 1s negative. This zone remains thin, and the
rough thickening of the boundary layer 1s observed practically in the
same zone as in stationary movement.

The amplitude and phase profiles also were measured by Kenilson.
The phase proflles indicate tendenciles associated with phase shifting of
the pressure gradient 3P with respect to the external veloecity. The
phase shifts in the boaﬁdary layer are more pronounced than in the case
Uo=cste. This can be explained by the fact that, in the vicinity of the 4;&
breakiway, the velocity near the wall is much lower, and the inertia,
therefore, 1s much weaker.

The experiments of Schachenmann and Rockwell in a conical diffuser
with a 6° total aperture indicate that the average characteristics of
the boundary layer are not affected by variation of the pulse frequency.
The average pressure recovery coefflcient is not affected either. Pre-
liminary tests conducted by Binder et al with much higher Strouhal
numbers lead to identical conclusions, as long as the boundary layer 1s
not separated (2a<7o). For larger apertures, very noticeable improve-
ments in yleld are obtained by increasing the frequency. It must be
noted that, in these tests, the external velocity frequency and ampli-
tude varied at the same time, and 1t is impossible to separate the
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Fig. 18. Turbulent boundary layer

exposed to average pressure gradient
perturbed by progressive wave (from
Kenilson).

which the phase 1s practically constant.

effects due to frequency and
those due to amplitude., Very
strong relative amplilitudes
were obtained up to 1l.24. In
additilon, this problem brings
into play coupling between the
external flow and the boundary
layer.

The tests reported by
Simpson were carried out at low
Strouhal numbers and at low
frequenciles, compared with the
characterlistic frequencles of
the turbulence. The first re-
sults published in this study
mainly concern the average set
velocity, amplitude and phase
profiles. At the statlon pre-
sented, it was found, in par-
ticular that the average set
veloclity profiles all have a
semilogarithmic regilon, in
The great thickness of the

boundary laysr has permitted precise determination of the phase varia-

tlons 1in the underlying layer.
sensitivity to unsteady effects,

rapidly.

during this colloguium.

These soundings confirm the very high
and they show that phase ¢ varies very

The flrst results we obtained on the effect of unsteadiness on a
boundary layer subject to a pressure gradient yere presented in detaill

In particular,

data obtained by means of a
Taser anemometer in a zone with back flow are described there.
zone develops, the unsteady effects become larger.

As this
For example, during

one period, the shape factor at the last measurement station varies

between 2 and 5.

When the shape factor is raised, very noticeable modi-
fications of oblateness factor F are noted.

In particular, F increases
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in the viecinity of the wall. leanwhile, 1t was verilfied that the
average set velocglty profiles at each instant of the period can be rep-
recented by profiles, drawn from a famlly established in the statlonary
state, in the outer reglon of the boundary layer (Flg. 19). This was
observed, as long the instantaneous proflle did not have a negatlve
veloeity (He2-2.3), up to Strouhal numbers on the order of 6 to 7.
Likewlse, the exlstence of a semllogarithmic region could be observed
at each instant during the period, the extent of which decreased, as in
statlionary flow, when the shape factor increased. It practilcally dis-
appeared when H was on the order of 2 to 2.3. In thls region, the
veloclty phase angle in the boundary layer, wlth respect to the external
velocity, has an extreme, the value of which has been compared to the
theoretical value given by Eg. (35) (Flg. 12). Good agreement is obtailned,
up to the time when the average velocity of the set becomes negative in
a small portion of the period. Here again, rapid varlatlons of the
phase angle were recorded near the wall.

X =340 mm t |H] G 3.2. Calculation of Boundary
mT 8 20 {196 | 27 Layer
U, =6 16 1,661 14
fml/// 0w / 12 | 146 | 07
ey 8 138 72 Most of the methods pro-
50 l_J.:ﬁ_g_J _ family zf posed and actually used are
Y e gﬁﬁg“ibgngc extensions, frequently very
50 ? 20! o experiment direct, of those perfected in
20 b te2 taB statilonary flow. Two types of /15
40 o ) methods are distinguished, with-
° o out comparison: methods of solu-
30~ 10 10 tion of local equations and
20 [ [ i methods of solution of global
equations.
10*'\ \\(\\ Y10 3.2.1. P d Method
2.1, ropose ethods
. . w\*\ ~a_,
T 1 T

(e 4

LAY LR R S R .
In the first type of method,
Fig. 19. Pulse turbulent boundary the basic equations to be solved
layer with average pressure gradient;
comparison of instantaneous velocity are local equations of continuity
profiles to theoretical family. and momentum, which are derived
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from Navlier-Stokes equations (1) and (2). The inctantaneous veloelby
ls broken down into the average of the set Uy and the turbulent fluc~-
tuation u',. After applying this breakdown in equations (1) and (2),
forming the average of the set of equations obtained and using the
boundary layeyr hypotheses, the following 1s obtalned

WodW

=T (36)
oo, g AN Y by
Ter ey em*aé(*‘a;\l ) (37)

Different turbulence schemes have been tested. The simplest are
the "zero equation models," eddy viscosity [45-48, 7] or the mixing
length models [L0-15]. These models are ildentlcal to those used in
stationary flow. FPor example, the mixing length model 1is written
2y
34

- {M’U':‘: 'Qz( (38)

where 24(x,t) is the same function as in stationary flow

{ . 4 Y
nE 0,035 e&(_;%«%_g,)

Near the wall, corrections are introduced o allow for viscosity
effects.

Several other authors have used a one equation model for the
Reynolds stress [4, 42, 32]. A two equation model for the kinetic
energy and dilssipation also have been used [10-15]. In these models,
only the convection term i1s modified, by ilncluding the time derivative.
For example, the two eguation model is written

2&~_<M‘V'>é—‘: . £ ,‘..}..(gf.‘:gf&) (39)
O 3 Oy’ &y & 3y
DE | ¢ Lewysd ¢, Al e
or --Cf,&duwbg Czl&'\‘ %(Gz . :,) (o)

L
" 'v'> 2 C =14
LWy > HE

In the second type of method, the local equations are integrated
over y. In general, they use the integral equation of momentum
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and, frequently, an auxlliary equation, whlch can be the integral
equation of contilnuity

¥ e oA D g (5.5

e -

A Qe * Ue o (h2)
or the integral equatlion of average kinetlc energy
$
My yite, a4y k) 2 (g !
S Ugbnﬁlbég !)*U,‘bb ‘oug S;’da (43)

or, again, an equatlon of momentum, obtained by multiplying the local
equation of momentum by y

) : )
[yde by o [Ty [y flomaay]2 b

5
S TR (RN Y 4 (hY)
L0 ) : L“}

Whatever the auxiliary equation used, 1t 1ls necessary to have
avallable supplementary relationships to solve the integral equations,
since they bring out an excessive number of unknowns. These closure
hypotheses are relatlonships between the integral quantities brought
out by lntegratlon of the local equations.

McDonald and Shamroth solve equations (41) and (43). The supple-
mentary relationships are obtained, by assuming that the average set
velocity proflle can be represented at each instant by a Coles profile.
The coefflclient of dissipation was calculated, by expressing friction
by means of a mixing length scheme.

In the method proposed by Kuhn and Nielsen, the basic systems are
equations (41) and (44), which are solved after linearization, by
assuming that the unsteady perturbation is weak. The supplementary re-~
lations were obtained by assuming that, at each instant, the velocity
profile is described by a Coles profile.

M.H. Patel has analyzed two methods. Each solves linearilzed equa-

tions, obtained by assuming a small unsteady, harmonic perturbation, In
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the first method, the average flow 1c calculated by a statlonary metheod,
for example, the method of Green. With the average flow known, the
ogselllatory perturbation can be caleulated, based on two hypothegses:

1, at each instant, the wall frictlon can be calculated by a stationary
rule (the Ludwieg-Tillmann law, for example); 2. the in phase and out of
phase components of the veloelty are represented by

Vit g 4 .
AN - N Y3
UJ(‘ " S (’2 ”‘?)

(46)

Patel has obtalned these profiles from hils experiments. These
expressilons were utillized to calculate the perturbations of the
integral denslties. R and S thus become the maln unknowns in the lIntegral
equations, and the solutilon provides thelr values,

In the second method analyzed by Patel, 1t simply 1s assumed that,
at each Instant, the supplementary relations used in the method of
Green remain valld.

The method proposed by Cousteix et al [11-13] likewise is an
extension of the method first established in stationary flow [31]. The
baslc system 1s made up of the integral equations of momentum (41) and
continulty (42). The closure relationships are obtained, after deter-
mination and analysis of the similarity solutions (similar in spirit to
the stationary solutions of Falkner and Skan of laminar flow). It is
assumed that the deficit velocltles obey a similarity rule of the form
(UeLU)/Ur=F'(y/6(x,t)), and the friction is calculated by a mixing
length model. It then is shown that the resulting famlly of profiles
ls strictly identical to that determined in stationary flow. It /16
depends uniquely on the Clauser parameter:

The set of closure relationships necessary to solution of the integral
equations 1ls then deduced:

one rule for the 81/6 ratilo

-%i = ¥R (&) ¥z (C(zlz)% (47)
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one rule for the wall {riction
A4 - 4 7) ~ . \
& J-:'eﬂ :Kgd » DG e Cu8) ":
one rule for the drive coeffleclent

¥ Ve . ¥ R(a) .4 28
FY ST ¥ 1(&) Ue & (49)

With respect to the statlonary case, only the relationship for
the drive coefficient is modifled.

Fps D* and P are functions of G, determined by the similarity solu-

tions
Fa: 0,643G » (316 L ?G’QG(A/GnG,fsfl)z)l’q
: 96 L6 a56", s

e %

Pz o046 . 40357/ 5

3.2.2. Application of Different Methods

Degpite the large number of publications on calculation of unsteady
turbulent boundary layers, 1t 1ls difficult to compare the performance
of the various proposed methods. Frequently, the methods have been
appllied to purely theoretlcal cases, and the various authors have not
taken up the same cases. L.W. Carr recently proposed standardization of
these examples. Without belng devoid of interest, such exerclses, mean-
while, are of only relative value. One method 1s compared with another,
and 1t is quite clear that no universally vallid method exlsts in tur-
bulent flow. Only systematic comparison to experiment permits deter-
mination of the fleld of validity of a method. Therefore, here, we limit
outselves Lo reporting some results of such comparisons,

At present, the most complete example 1s that of a boundary layer
of a flat plate exposed to a harmonic perturbation. A comparison with /17 .
avallable experimental data is presented in Flg. 20, We note that the
Strouhal number 1s not the unique parameter of the solution. The
Reynolds number and the amplitude of the fluctuations can play a part.
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It appearc that, for intermediate Strouhal numbers in the 1 to §
range, the various ealeculations arc not too different from experiment,
For lorge Strouhal numbers, there 1o a major difficulty. It 1o the
modeling of turbulenee in the vigeous underlying layer. Aetually, when
the Strouhal number 1s very large, the uncteady effeets are ineluded in
a very thin layer near the wall, and prediction of them 1o epssentially
assocliated with modeling of the underlying layer, and thisc problem 1p
part of that of the interaection between the forced pulsation and tur-
bulence, since the forced frequeney ic in the range of the characterlstic
frequenciles of the turbulence. Acharya has carried out experimente
with pulge flow in a duet, in whleh the aﬁplitude and phase variations
of the veloeclty are located mainly in the underlying layer. The cal-
culation tests he presents effectively indicate difficulties.
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Flg. 21, Calculation-experiment comparison: i1ntensity
of turbulence.

We present a comparison of turbulence intensity and turbulent
pressure profiles we have obtained in Figs. 21 and 22. Wlth the exper-
imental dispersion, especially of <u'v'>, taken into account, 1t is
difficult to state which of the methods used 1s better. However, 1t
appears that the mixing length model predlcts the deformation of the
<u'v'> profiles more poorly, especlally at instants 9 and 12, located
at the exfernal velocity maximum.
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Fig., 22, Calculation-experiment comparicon: turbulent
pregsure.,

Figo. 23 and 24 show a comparison of the experiments of M.H., Patel,

The different caleculations were carried out with integral methods. Up

to the highest Strouhal number (6.65), good agreement with experiment
is obtailned, the phase deviations certainly are not significant, with

the difficulty of determining them experimentally with precision taken

into account. In any case, a small dlsperslon must be noted in the
theoretical recults for the largest Strouhal numbers.

Finally, Flg. 25 presents a comparison of the filrgst results we

obtalned with the average pressure gradient. The calculations, carried

out by the integral method, are interrupted at the statlon where a
return flow appears., Actually, extension of the calculation area in

the recirculation reglon requires that certaln conditions at the Limits

along the boundary downstream of the area be taken into account.

3.2.3. Breakaway problem. Formatlon of Singularitles in the
Boundary Layer Calculation,

The breakaway problem ralses numerous other questlong, and it still
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- The only certain proposition

2 1 AH/8Ug — - is negative. Breakaway 1s not
< necessarlily connected to point
L
| e - e Cr,y=0, as in stationary flow. It
w/}// must be emphasized that confusion
y———G—--‘"""L“"
0 : frequently has occurred over the
i : , word, breakaway, slnce some authors.
3t - have, by definitilion, connected this

Hz Ho ¢ OHsifilwh o ful e word to the fact that CP=0.
y UeuUe, + alcginfw + Pug) ¢+ ¢ Rather, 1t must be reserved to
. Exp . signlfy catastrophe (breakaway,
e Coleul breakdown) for the boundary layer

o)
2 |- Integral method) i equations, by which the very no-

tlon of boundary layer ceases to
2 be valid.
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Several authors have proposed
breakaway criteria, princilpally in
laminar flow. We first mention

L xm"‘

FPig. 25. Calculatlon-experiment
comparison: pulsed turbulent bound- that of Moore, Rott and Sears [39],

ary layer wlth average pressure established for the case of sta-
gradlent. tionary flow with a mobile wall
(Up#o). Breakaway develops at a point where the velocity is zerp and
where the gradient also is zero. This problem 1s a special case of un-
steady flow because, in a reference system connected to the wall, the
flow is quite unsteady, and it has been proposed [39] to use a similar
criterion in the general case. However, numerical studies have shown
that a singularity doeg not always occur at this point.

A more global approach to this problem, always in laminar flow,
has been studied by Shen and Nennl, who found the existence of a singu-
larity, by a noncoincidence condition between the boundary layer and the
potential flow. This condition is expressed by the fact that the vertical
velocity becomes not limited at the boundary of the boundary layer.
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5 They have shown that the wall friction hehavior gives an indication of
g this condltion. Besides, they have shown that the wall frictlon obeys
: a Burgers type equatilon

za,.‘.‘ig‘-#,{ ¢ %8

-‘I'.L,Q "QQ IQ, + ’\i"g I’U, (50)

hl, h2 and h3 are functions of x and t. '

Therefore, 1t clearly appears that point r_=0 does not, a priori,
play any specilal part, except in stationary flow (8 _=0), where a Gold-
stein type singularity then 1s found for rp, whichaevaries as the
square root of x. In unsteady flow, the formation of singularities must
be found elsewhere, in the form of a discontinulty by development of a

: shock wave.

b bl A

Jomparable results have been found by Coustelx et al in the tur-
bulent case, by analyzing the properties of the integral equations
(equation of continuity and of momentum), to which closure relation-
ships (47), (48) and (49) are added. It leads to the following
conclusions:

the system always has two real characteristic directions Al
and AZ (A=dx/uedt); it is hyperbolic;

one of the directions,‘kl, is always such that 0<A.<l;

1
the 2nd direction, AE, is positive for values of the form
5E factor less than a critical value HE(HC=2.6); 1t 1s negative for H>H .

It also 1s shown that point H=Hc, in practice, 1s confused with
point Cf=0. Therefore, the result is that the formation of singularities
is not connected with point Of=0. Whenlk2 becomes negative, this
signifies that information is transmitted from downstream to upstream.

N The development of singularities occurs by the formation of shock
| fronts, across which the characteristics of the boundary layer are
' discontinuous. It is clear that the hypotheses themselves of the
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boundary layer, bthen, are defectilve,

It can bhe thought that, as 1n

stationary flow, coupling with the external flow must be resorted to,

in order to avoid these singularities.

To support this hypothesils we consider the case of a separated

boundary layer,
when time becomes infinite.

caleulated as the limlt of a transient development,

To simplify, we analyze the case of a

theoretical flow in a unidimensional diffuser (Flg. 26).

For t<0, the external veloclty
1f constant, and the boundary layer
obeys the stationary rules. At t=

30} S ta00ss 0, the velocity 1 dified dis-
WS . s y 1s mo e 8
20 o tmOs continuonsly. U, decreases linearly
&1(m) \ 0082 in the 0¢x¢0.6 range, and U_ is
Qoz_f (/////{’ \Qﬁj28%%Umg constant for x>0.6. For t>0, two
0,011 ] J>/UﬁQEL:§h“=m:::: calculations have been carried out.
.4L)i&£”’ “05‘\\f“~' In the first, withouf coupling, the
8, (m) forced velocity at t=0 is maintailned
opz_f //‘\~\45Q%s independent of time. Then, when ¢
0.011 with coupling (m'“ increases, a discontinuilty in the
m,,daf”ngzﬁ\\‘\Lﬁﬁﬁg evolution of §, is found, which
0 01 02 Ob 04 05 Ob Oﬁ 08 ob corresponds to the formation of a
=== X(m) shock front.
Fig. 26. Calculation of statilon-

ary boundary layer with recircu-~

lation airhole by unsteady method
with coupling to external flow

taken into account.

In the second calculation, an
attempt at coupling between the
boundary layer and the nonviscous

fluid was made, simply by using a unidimensional section principle

2 (95-26,), 2

k14

UL(S“QSA) w0 (51)

SR
Jdm

where S(x) is the diffuser cross section such that, at time t=0, the

velocity distribution satisfies Ue(S—261)=Cte.

In the second calculation, therefore, the velocity distribution

develops as a function of time, according to Eq.

(51). Under these
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condltions, a perfectly stable stationary solution results., It 1s of
interest to note that this solutlon lnecludes a return flow offset, and
that it shows nc slgn of singularities at polnts cf=o. We strecs the
fact that thils could only be obtained, by means of coupling between the
nonviscous fluid and the boundary layer.

We point out that Nash and Scruggs have carriled out turbulent
boundary layer calculatlons, by usilng a transport equatlion model. In
the theoretical examples with which they deal, they also observe the
formation of singularities, 1f the external veloclty 1s forced. By
using a pressure gradlent reduction procedure when the thickenlng of
the boundary layer 1s too great, they show that the singularity can be
avolded by maintaining a zone with return flow.

We also point out that Briley and McDonald have proposed a boundary
layer calculation technique with a breakaway offset, by an unsteady
method, while taking account of coupling with the nonviscous fluid.

4, Conclusions

Recent experiments and those which are underway are providing
indispensable data on the behavior of oscillating turbulent boundary
layers, which have been missing so far, and they can be the basils for
deciding the validity of the calculation methods.

Meanwhile, some areas still remain partly unexplored. In the quite
moderate Strouhal range (S<5), the effect on the viscous underlying
layer of unsteadiness must be better defined. This problem perhaps is
not too crucial f'or Strouhal numbers, since the proposed methods of cal-
culation give results which, as a whole, are quite consistent with each
other and with those of experiments, at least when the average pressure
gradient 1s zero. For higher Strouhal numbers (on the order of 20), the
problem is much greater. Actually, unsteady perturbations show up in a
layer, the thickness of which decreases when the Strouhal number increases
and can be limited to the thickness of the underlying layer. Therefore,
it is thought that prediction of the coefficient of frictilon and of its
amplitude and phase depends mainly on good modeling of the turbulence in
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the underlying layer. Under such conditilons, a second problem 1s raised:
for these Strouhal numbers and the customary Reynolds number, the fre-
quency lImposed on the flow, within the range of characteristic frequenciles
of the turbulence. Interaction between the harmonic perturbation and
turbulence can then exist,

Breakaway and the formation of singularities in the boundary layer
calculation remain unsolved problems, even 1ln laminar flow. Several
humerical studiles, in laminar, as well as turbulent flow, have shown that
singularities can develop inside the boundary layer, but interpretation
and theoretical study of them are incomplete. These singularitles fre-
quently appear to clearly oppose the valldity of the hypotheses used to
establish the boundary layer equations. Nevertheless, it can be hoped
to remove these difficulties in a number of cases, by turning to coupling
wlth the external flow.
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