185 research outputs found

    Mixed and galerkin finite element approximation of flow in a linear viscoelastic porous medium

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2013 ElsevierThis article has been made available through the Brunel Open Access Publishing Fund.We propose two fully discrete mixed and Galerkin finite element approximations to a system of equations describing the slow flow of a slightly compressible single phase fluid in a viscoelastic porous medium. One of our schemes is the natural one for the backward Euler time discretization but, due to the viscoelasticity, seems to be stable only for small enough time steps. The other scheme contains a lagged term in the viscous stress and pressure evolution equations and this is enough to prove unconditional stability. For this lagged scheme we prove an optimal order a priori error estimate under ideal regularity assumptions and demonstrate the convergence rates by using a model problem with a manufactured solution. The model and numerical scheme that we present are a natural extension to ‘poroviscoelasticity’ of the poroelasticity equations and scheme studied by Philips and Wheeler in (for example) [Philip Joseph Philips, Mary F.Wheeler, Comput. Geosci. 11 (2007) 145–158] although — importantly — their algorithms and codes would need only minor modifications in order to include the viscous effects. The equations and algorithms presented here have application to oil reservoir simulations and also to the condition of hydrocephalus — ‘water on the brain’. An illustrative example is given demonstrating that even small viscoelastic effects can produce noticeable differences in long-time response. To the best of our knowledge this is the first time a mixed and Galerkin scheme has been analysed and implemented for viscoelastic porous media

    Fracture Propagation Driven by Fluid Outflow from a Low-permeability Aquifer

    Full text link
    Deep saline aquifers are promising geological reservoirs for CO2 sequestration if they do not leak. The absence of leakage is provided by the caprock integrity. However, CO2 injection operations may change the geomechanical stresses and cause fracturing of the caprock. We present a model for the propagation of a fracture in the caprock driven by the outflow of fluid from a low-permeability aquifer. We show that to describe the fracture propagation, it is necessary to solve the pressure diffusion problem in the aquifer. We solve the problem numerically for the two-dimensional domain and show that, after a relatively short time, the solution is close to that of one-dimensional problem, which can be solved analytically. We use the relations derived in the hydraulic fracture literature to relate the the width of the fracture to its length and the flux into it, which allows us to obtain an analytical expression for the fracture length as a function of time. Using these results we predict the propagation of a hypothetical fracture at the In Salah CO2 injection site to be as fast as a typical hydraulic fracture. We also show that the hydrostatic and geostatic effects cause the increase of the driving force for the fracture propagation and, therefore, our solution serves as an estimate from below. Numerical estimates show that if a fracture appears, it is likely that it will become a pathway for CO2 leakage.Comment: 21 page

    HRAS is a therapeutic target in malignant chemo-resistant adenomyoepithelioma of the breast

    Get PDF
    Abstract Malignant adenomyoepithelioma (AME) of the breast is an exceptionally rare form of breast cancer, with a significant metastatic potential. Chemotherapy has been used in the management of advanced AME patients, however the majority of treatments are not effective. Recent studies report recurrent mutations in the HRAS Q61 hotspot in small series of AMEs, but there are no preclinical or clinical data showing H-Ras protein as a potential therapeutic target in malignant AMEs. We performed targeted sequencing of tumours’ samples from new series of 13 AMEs, including 9 benign and 4 malignant forms. Samples from the breast tumour and the matched axillary metastasis of one malignant HRAS mutated AME were engrafted and two patient-derived xenografts (PDX) were established that reproduced the typical AME morphology. The metastasis-derived PDX was treated in vivo by different chemotherapies and a combination of MEK and BRAF inhibitors (trametinib and dabrafenib). All malignant AMEs presented a recurrent mutation in the HRAS G13R or G12S hotspot. Mutation of PIK3CA were found in both benign and malignant AMEs, while AKT1 mutations were restricted to benign AMEs. Treatment of the PDX by the MEK inhibitor trametinib, resulted in a marked anti-tumor activity, in contrast to the BRAF inhibitor and the different chemotherapies that were ineffective. Overall, these findings further expand on the genetic features of AMEs and suggest that patients carrying advanced HRAS-mutated AMEs could potentially be treated with MEK inhibitors

    A conduit dilation model of methane venting from lake sediments

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L06408, doi:10.1029/2011GL046768.Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the methane generated in organic-rich sediments underlying surface water bodies, including lakes, wetlands, and the ocean. The fraction of the methane that reaches the atmosphere depends critically on the mode and spatiotemporal characteristics of free-gas venting from the underlying sediments. Here we propose that methane transport in lake sediments is controlled by dynamic conduits, which dilate and release gas as the falling hydrostatic pressure reduces the effective stress below the tensile strength of the sediments. We test our model against a four-month record of hydrostatic load and methane flux in Upper Mystic Lake, Mass., USA, and show that it captures the complex episodicity of methane ebullition. Our quantitative conceptualization opens the door to integrated modeling of methane transport to constrain global methane release from lakes and other shallow-water, organic-rich sediment systems, and to assess its climate feedbacks.This work was supported by the U.S. Department of Energy (grants DE‐FC26‐06NT43067 and DE‐AI26‐05NT42496), an NSF Doctoral Dissertation Research grant (0726806), a GSA Graduate Student Research grant, and MIT Martin, Linden and Ippen fellowships

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Homage to Olivier Coussy

    No full text
    • 

    corecore