310 research outputs found
Semi-natural habitats in boreal Europe: a rise of a social-ecological research agenda
The European continent contains substantial areas of semi-natural habitats, mostly grasslands, which are among the most endangered habitats in Europe. Their continued existence depends on some form of human activity, for either production or conservation purposes, or both. We examined the share of semi-natural grasslands within the general grassland areas in boreal Europe. We reviewed research literature across the region to compile evidence on semi-natural grasslands and other semi-natural habitats, such as wooded pastures, in respect to a range of topics such as ecology, land-use change, socioeconomics, and production. We also explored drivers of the research agenda and outlined future research needs. Challenges are faced when defining and quantifying semi-natural habitats even across a restricted region. Agricultural development and other policies clearly impact the research agenda in various countries. There are recent signs of a shift from classical ecological studies toward more multidisciplinary and integrated research. To sufficiently address the threats faced by semi-natural habitats, political and research frameworks in the European Union should pay more attention to the social-ecological complexity inherent in their management and should support the engagement of various actors into participatory governance processes. This is in line with a full-farm approach implicit in high nature value farming systems
Mojito, Anyone? An Exploration of Low-Tech Plant Water Extraction Methods for Isotopic Analysis Using Locally-Sourced Materials
The stable isotope composition of water (δ18O and δ2H) is an increasingly utilized tool to distinguish between different pools of water along the soil-plant-atmosphere continuum (SPAC) and thus provides information on how plants use water. Clear bottlenecks for the ubiquitous application of isotopic analysis across the SPAC are the relatively high-energy and specialized materials required to extract water from plant materials. Could simple and cost-effective do-it-yourself "MacGyver" methods be sufficient for extracting plant water for isotopic analysis? This study develops a suite of novel techniques for plant water extraction and compares them to a standard research-grade water extraction method. Our results show that low-tech methods using locally-sourced materials can indeed extract plant water consistently and comparably to what is done with other state-of-the-art methods. Further, our findings show that other factors play a larger role than water extraction methods in achieving the desired accuracy and precision of stable isotope composition: (1) appropriate transport, (2) fast sample processing and (3) efficient workflows. These results are methodologically promising for the rapid expansion of isotopic investigations, especially for citizen science and/or school projects or in remote areas, where improved SPAC understanding could help manage water resources to fulfill agricultural and other competing water needs
Sensitivity to habitat fragmentation across European landscapes in three temperate forest herbs
Context Evidence for effects of habitat loss and fragmentation on the viability of temperate forest herb populations in agricultural landscapes is so far based on population genetic studies of single species in single landscapes. However, forest herbs differ in their life histories, and landscapes have different environments, structures and histories, making generalizations difficult. Objectives We compare the response of three slow-colonizing forest herbs to habitat loss and fragmentation and set this in relation to differences in life-history traits, in particular their mating system and associated pollinators. Methods We analysed the herbs' landscape-scale population genetic structure based on microsatellite markers from replicate forest fragments across seven European agricultural landscapes. Results All species responded to reductions in population size with a decrease in allelic richness and an increase in genetic differentiation among populations. Genetic differentiation also increased with enhanced spatial isolation. In addition, each species showed unique responses. Heterozygosity in the self-compatible Oxalis acetosella was reduced in smaller populations. The genetic diversity of Anemone nemorosa, whose main pollinators are less mobile, decreased with increasing spatial isolation, but not that of the bumblebee-pollinated Polygonatum multiflorum. Conclusions Our study indicates that habitat loss and fragmentation compromise the long-term viability of slow-colonizing forest herbs despite their ability to persist for many decades by clonal propagation. The distinct responses of the three species studied within the same landscapes confirm the need of multi-species approaches. The mobility of associated pollinators should be considered an important determinant of forest herbs' sensitivity to habitat loss and fragmentation
Soil seed bank responses to edge effects in temperate European forests
Aim The amount of forest edges is increasing globally due to forest fragmentation and land-use changes. However, edge effects on the soil seed bank of temperate forests are still poorly understood. Here, we assessed edge effects at contrasting spatial scales across Europe and quantified the extent to which edges can preserve the seeds of forest specialist plants. Location Temperate European deciduous forests along a 2,300-km latitudinal gradient. Time period 2018-2021. Major taxa studied Vascular plants. Methods Through a greenhouse germination experiment, we studied how edge effects alter the density, diversity, composition and functionality of forest soil seed banks in 90 plots along different latitudes, elevations and forest management types. We also assessed which environmental conditions drive the seed bank responses at the forest edge versus interior and looked at the relationship between the seed bank and the herb layer species richness. Results Overall, 10,108 seedlings of 250 species emerged from the soil seed bank. Seed density and species richness of generalists (species not only associated with forests) were higher at edges compared to interiors, with a negative influence of C : N ratio and litter quality. Conversely, forest specialist species richness did not decline from the interior to the edge. Also, edges were compositionally, but not functionally, different from interiors. The correlation between the seed bank and the herb layer species richness was positive and affected by microclimate. Main conclusions Our results underpin how edge effects shape species diversity and composition of soil seed banks in ancient forests, especially increasing the proportion of generalist species and thus potentially favouring a shift in community composition. However, the presence of many forest specialists suggests that soil seed banks still play a key role in understorey species persistence and could support the resilience of our fragmented forests
- …