536 research outputs found

    Effects of an intervention program for female victims of intimate partner violence on psychological symptoms and perceived social support

    Get PDF
    Background: Research has documented severe mental health problems in female victims of intimate partner violence (IPV). Therefore, providing effective treatment is pivotal. Few studies have investigated the effects of intervention programs on reducing the harmful consequences of IPV. Objective: The present study examined the effects of a specific three-phase intervention program for female victims of IPV on psychological symptoms (PTSD, anxiety, and depression) and perceived social support. Given that many of the women dropped out before and during the intervention program, potential differences in initial levels of psychological symptoms, perceived social support, as well as descriptive variables were explored between the women who completed the whole program and the groups of women who dropped out prematurely. Method: The initial sample consisted of 212 female victims of IPV. Symptoms of PTSD, depression, anxiety, and level of perceived social support were measured with validated scales before the start of the intervention and after completion of each treatment phase. Results: Results showed a significant effect of the intervention program on reducing psychological symptoms and increasing levels of perceived social support. Effect sizes ranged from medium to very high. Significant positive effects were found for each of the treatment phases. There were no significant differences between the women who completed the whole program and those women who dropped out prematurely in terms of initial level of symptoms and perceived social support as well as descriptive characteristics. Conclusions: Specifically developed intervention programs for female victims of IPV are effective in reducing the harmful personal consequences of IPV. Future studies should consider employing controlled study designs and address the issue of high drop out rates found in intervention studies

    Atom cooling and trapping by disorder

    Get PDF
    We demonstrate the possibility of three-dimensional cooling of neutral atoms by illuminating them with two counterpropagating laser beams of mutually orthogonal linear polarization, where one of the lasers is a speckle field, i.e. a highly disordered but stationary coherent light field. This configuration gives rise to atom cooling in the transverse plane via a Sisyphus cooling mechanism similar to the one known in standard two-dimensional optical lattices formed by several plane laser waves. However, striking differences occur in the spatial diffusion coefficients as well as in local properties of the trapped atoms.Comment: 11 figures (postscript

    Quantum damping of position due to energy measurements

    Get PDF
    Quantum theory for measurements of energy is introduced and its consequences for the average position of monitored dynamical systems are analyzed. It turns out that energy measurements lead to a localization of the expectation values of other observables. This is manifested, in the case of position, as a damping of the motion without classical analogue. Quantum damping of position for an atom bouncing on a reflecting surface in presence of a homogeneous gravitational field is dealt in detail and the connection with an experiment already performed in the classical regime is studied. We show that quantum damping is testable provided that the same measurement strength obtained in the experimental verification of the quantum Zeno effect in atomic spectroscopy [W. M. Itano et al., Phys. Rev. A {\bf 41}, 2295 (1990)] is made available.Comment: 19 pages + 4 figures available upon request; Plain REVTeX; To be published in Phys. Rev.

    Quantum-state control in optical lattices

    Full text link
    We study the means to prepare and coherently manipulate atomic wave packets in optical lattices, with particular emphasis on alkali atoms in the far-detuned limit. We derive a general, basis independent expression for the lattice operator, and show that its off-diagonal elements can be tailored to couple the vibrational manifolds of separate magnetic sublevels. Using these couplings one can evolve the state of a trapped atom in a quantum coherent fashion, and prepare pure quantum states by resolved-sideband Raman cooling. We explore the use of atoms bound in optical lattices to study quantum tunneling and the generation of macroscopic superposition states in a double-well potential. Far-off-resonance optical potentials lend themselves particularly well to reservoir engineering via well controlled fluctuations in the potential, making the atom/lattice system attractive for the study of decoherence and the connection between classical and quantum physics.Comment: 35 pages including 8 figures. To appear in Phys. Rev. A. March 199

    Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.

    Get PDF
    BackgroundTo determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed.MethodsTen CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system.ResultsAn average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1).ConclusionThe RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis

    The Global Ambitions of Irish Universities: Internationalizing Practices and Emerging Stratification in the Irish Higher Education Sector

    Get PDF
    As higher education is increasingly harnessed to national economic goals and as funding shifts from public to private sources, Irish universities are under unprecedented pressure to “internationalize.” Yet the way they mediate national policy is constrained by funding and market forces as well as by their own organizational features and position in the field. Analysis of bilateral non-EU partnerships reveals competing logics of prestige, finances, and alignment with national ambitions in the global economy. Historical hierarchies between Irish third-level institutions are thus reinforced, while internally, status distinctions emerge between the various types of partnerships and student exchange programs. The shape taken by internationalization may reinforce various strands of inter-institutional and intra-institutional inequality, without guaranteeing that Irish universities succeed in their ambitions to achieve “world-class” status

    Towards quantum thermodynamics in electronic circuits

    Get PDF
    Electronic circuits operating at sub-kelvin temperatures are attractive candidates for studying classical and quantum thermodynamics: their temperature can be controlled and measured locally with exquisite precision, and they allow experiments with large statistical samples. The availability and rapid development of devices such as quantum dots, single-electron boxes and superconducting qubits only enhance their appeal. But although these systems provide fertile ground for studying heat transport, entropy production and work in the context of quantum mechanics, the field remains in its infancy experimentally. Here, we review some recent experiments on quantum heat transport, fluctuation relations and implementations of Maxwell’s demon, revealing the rich physics yet to be fully probed in these systems.Peer reviewe

    Dissipative Electron Transport through Andreev Interferometers

    Full text link
    We consider the conductance of an Andreev interferometer, i.e., a hybrid structure where a dissipative current flows through a mesoscopic normal (N) sample in contact with two superconducting (S) "mirrors". Giant conductance oscillations are predicted if the superconducting phase difference ϕ\phi is varied. Conductance maxima appear when ϕ\phi is on odd multiple of π\pi due to a bunching at the Fermi energy of quasiparticle energy levels formed by Andreev reflections at the N-S boundaries. For a ballistic normal sample the oscillation amplitude is giant and proportional to the number of open transverse modes. We estimate using both analytical and numerical methods how scattering and mode mixing --- which tend to lift the level degeneracy at the Fermi energy --- effect the giant oscillations. These are shown to survive in a diffusive sample at temperatures much smaller than the Thouless temperature provided there are potential barriers between the sample and the normal electron reservoirs. Our results are in good agreement with previous work on conductance oscillations of diffusive samples, which we propose can be understood in terms of a Feynman path integral description of quasiparticle trajectories.Comment: 24 pages, revtex, 12 figures in eps forma

    Spinor condensates and light scattering from Bose-Einstein condensates

    Full text link
    These notes discuss two aspects of the physics of atomic Bose-Einstein condensates: optical properties and spinor condensates. The first topic includes light scattering experiments which probe the excitations of a condensate in both the free-particle and phonon regime. At higher light intensity, a new form of superradiance and phase-coherent matter wave amplification were observed. We also discuss properties of spinor condensates and describe studies of ground--state spin domain structures and dynamical studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999 Summer School, Session LXXI

    Purinergic receptors are part of a signalling system for proliferation and differentiation in distinct cell lineages in human anagen hair follicles

    Get PDF
    We investigated the expression of P2X5, P2X7, P2Y1 and P2Y2 receptor subtypes in adult human anagen hair follicles and in relation to markers of proliferation [proliferating cell nuclear antigen (PCNA) and Ki-67], keratinocyte differentiation (involucrin) and apoptosis (anticaspase-3). Using immunohistochemistry, we showed that P2X5, P2Y1 and P2Y2 receptors were expressed in spatially distinct zones of the anagen hair follicle: P2Y1 receptors in the outer root sheath and bulb, P2X5 receptors in the inner and outer root sheaths and medulla and P2Y2 receptors in living cells at the edge of the cortex/medulla. P2X7 receptors were not expressed. Colocalisation experiments suggested different functional roles for these receptors: P2Y1 receptors were associated with bulb and outer root sheath keratinocyte proliferation, P2X5 receptors were associated with differentiation of cells of the medulla and inner root sheaths and P2Y2 receptors were associated with early differentiated cells in the cortex/medulla that contribute to the formation of the hair shaft. The therapeutic potential of purinergic agonists and antagonists for controlling hair growth is discussed
    • …
    corecore