43 research outputs found

    Plant functional traits mediate above- and belowground species interactions in ecological communities

    Get PDF
    Functional plant traits provide a means whereby species identity can influence above- and belowground community interactions. To examine the role of plant functional traits in shaping ecological communities, Chapter 1 examines how the evolution of functional differences between closely related groups of endemic and non-endemic species influence associated species interactions, and Chapter 2 examines how plant functional traits can influence associated community composition

    Shifts in Species Interactions Due to the Evolution of Functional Differences between Endemics and Non-Endemics: An Endemic Syndrome Hypothesis

    Get PDF
    Species ranges have been shifting since the Pleistocene, whereby fragmentation, isolation, and the subsequent reduction in gene flow have resulted in local adaptation of novel genotypes and the repeated evolution of endemic species. While there is a wide body of literature focused on understanding endemic species, very few studies empirically test whether or not the evolution of endemics results in unique function or ecological differences relative to their widespread congeners; in particular while controlling for environmental variation. Using a common garden composed of 15 Eucalyptus species within the subgenus Symphyomyrtus (9 endemic to Tasmania, 6 non-endemic), here we hypothesize and show that endemic species are functionally and ecologically different from non-endemics. Compared to non-endemics, endemic Eucalyptus species have a unique suite of functional plant traits that have extended effects on herbivores. We found that while endemics occupy many diverse habitats, they share similar functional traits potentially resulting in an endemic syndrome of traits. This study provides one of the first empirical datasets analyzing the functional differences between endemics and non-endemics in a common garden setting, and establishes a foundation for additional studies of endemic/non-endemic dynamics that will be essential for understanding global biodiversity in the midst of rapid species extinctions and range shifts as a consequence of global change

    Fire Promotes Pollinator Visitation: Implications for Ameliorating Declines of Pollination Services

    Get PDF
    Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue. DOI: 10.1371/journal.pone.007985

    Thyroid cancer susceptibility polymorphisms: confirmation of loci on chromosomes 9q22 and 14q13, validation of a recessive 8q24 locus and failure to replicate a locus on 5q24

    Get PDF
    Five single nucleotide polymorphisms (SNPs) associated with thyroid cancer (TC) risk have been reported: rs2910164 (5q24); rs6983267 (8q24); rs965513 and rs1867277 (9q22); and rs944289 (14q13). Most of these associations have not been replicated in independent populations and the combined effects of the SNPs on risk have not been examined. This study genotyped the five TC SNPs in 781 patients recruited through the TCUKIN study. Genotype data from 6122 controls were obtained from the CORGI and Wellcome Trust Case-Control Consortium studies. Significant associations were detected between TC and rs965513A (p=6.35Ɨ10āˆ’34), rs1867277A (p=5.90Ɨ10āˆ’24), rs944289T (p=6.95Ɨ10āˆ’7), and rs6983267G (p=0.016). rs6983267 was most strongly associated under a recessive model (PGG vs GT + TT=0.004), in contrast to the association of this SNP with other cancer types. However, no evidence was found of an association between rs2910164 and disease under any risk model (p>0.7). The rs1867277 association remained significant (p=0.008) after accounting for genotypes at the nearby rs965513 (p=2.3Ɨ10āˆ’13) and these SNPs did not tag a single high risk haplotype. The four validated TC SNPs accounted for a relatively large proportion (āˆ¼11%) of the sibling relative risk of TC, principally owing to the large effect size of rs965513 (OR 1.74)

    Outcrossing rates in an experimentally admixed population of self-compatible and self-incompatible Arabidopsis lyrata

    No full text
    The transition to self-compatibility from self-incompatibility is often associated with high rates of self-fertilization, which can restrict gene flow among populations and cause reproductive isolation of self-compatible (SC) lineages. Secondary contact between SC and self-incompatible (SI) lineages might re-establish gene flow if SC lineages remain capable of outcrossing. By contrast, intrinsic features of SC plants that reinforce high rates of self-fertilization could maintain evolutionary divergence between lineages. Arabidopsis lyrata subsp. lyrata is characterized by multiple origins of self-compatibility and high rates of self-fertilization in SC-dominated populations. It is unclear whether these high rates of selfing by SC plants have intrinsic or extrinsic causes. We estimated outcrossing rates and examined patterns of pollinator movement for 38 SC and 40 SI maternal parents sampled from an admixed array of 1509 plants sourced from six SC and six SI populations grown under uniform density. Although plants from SI populations had higher outcrossing rates (mean tmā€‰=ā€‰0.78ā€‰Ā±ā€‰0.05 SE) than plants from SC populations (mean tmā€‰=ā€‰0.56ā€‰Ā±ā€‰0.06 SE), outcrossing rates among SC plants were substantially higher than previous estimates from natural populations. Patterns of pollinator movement appeared to contribute to lower outcrossing rates for SC plants; we estimated that 40% of floral visits were geitonogamous (between flowers of the same plant). The relatively high rates of outcrossing for SC plants under standardized conditions indicate that selfing rates in natural SC populations of A. lyrata are facultative and driven by extrinsic features of A. lyrata, including patterns of pollinator movement.publishe

    No evidence for incipient speciation by selfing in North American Arabidopsis lyrata

    No full text
    Self-fertilization inherently restricts gene flow by reducing the fraction of offspring that can be produced by inter-population matings. Therefore, mating system transitions from outcrossing to selfing could result in reproductive isolation between selfing and outcrossing lineages and provide a starting point for speciation. In newly diverged lineages, for example after a transition to selfing, further reproductive isolation can be caused by a variety of prezygotic and postzygotic mechanisms that operate before, during, and after pollination. In animals, prezygotic barriers tend to evolve faster than postzygotic ones. This is not necessarily the case for plants, for which the relative importance of post-mating, post-fertilization, and early acting post-zygotic barriers has been investigated far less. To test whether post-pollination isolation exists between populations of North American Arabidopsis lyrata that differ in breeding (self-incompatible versus self-compatible) and mating system (outcrossing versus selfing), we compared patterns of seed set after crosses made within populations, between populations of the same mating system, and between populations with different mating systems. We found no evidence for post-pollination isolation between plants from selfing populations (self-compatible, low outcrossing rates) and outcrossing populations (self-incompatible, high outcrossing rates) via either prezygotic or early-acting postzygotic mechanisms. Together with the results of other studies indicating the absence of reproductive barriers acting before and during pollination, we conclude that the transition to selfing in this study system has not led to the formation of reproductive barriers between selfing and outcrossing populations of North American A. lyrata.publishe

    Limited phenological and pollinator-mediated isolation among selfing and outcrossing Arabidopsis lyrata populations

    No full text
    Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.publishe

    A shift towards the annual habit in selfing Arabidopsis lyrata

    No full text
    An annual life history is often associated with the ability to self-fertilize. However, it is unknown whether the evolution of selfing commonly precedes the evolution of annuality, or vice versa. Using a 2-year common garden experiment, we asked if the evolution of selfing in the normally perennial Arabidopsis lyrata was accompanied by a shift towards the annual habit. Despite their very recent divergence from obligately outcrossing populations, selfing plants exhibited a 39% decrease in over-winter survival after the first year compared with outcrossing plants. Our data ruled out the most obvious underlying mechanism: differences in reproductive investment in the first year did not explain differences in survival. We conclude that transitions to selfing in perennial A. lyrata may be accompanied by a shift towards annuality, but drivers of the process require further investigation.publishe

    Multiple regression model results for leaf traits on herbivore response.

    No full text
    <p>Summary of regression analysis of the correlation between plant functional traits and total foliar herbivory (<i>n</i>ā€Š=ā€Š412).</p><p>Multiple regression model results for leaf traits on herbivore response.</p
    corecore