42 research outputs found

    AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress

    Get PDF
    Mammalian brain connectivity requires the coordinated production and migration of billions of neurons and the formation of axons and dendrites. The LKB1/Par4 kinase is required for axon formation during cortical development in vivo partially through its ability to activate SAD-A/B kinases. LKB1 is a master kinase phosphorylating and activating at least 11 other serine/threonine kinases including the metabolic sensor AMP-activated protein kinase (AMPK), which defines this branch of the kinome. A recent study using a gene-trap allele of the β1 regulatory subunit of AMPK suggested that AMPK catalytic activity is required for proper brain development including neurogenesis and neuronal survival. We used a genetic loss-of-function approach producing AMPKα1/α2-null cortical neurons to demonstrate that AMPK catalytic activity is not required for cortical neurogenesis, neuronal migration, polarization, or survival. However, we found that application of metformin or AICAR, potent AMPK activators, inhibit axogenesis and axon growth in an AMPK-dependent manner. We show that inhibition of axon growth mediated by AMPK overactivation requires TSC1/2-mediated inhibition of the mammalian target of rapamycin (mTOR) signaling pathway. Our results demonstrate that AMPK catalytic activity is not required for early neural development in vivo but its overactivation during metabolic stress impairs neuronal polarization in a mTOR-dependent manner

    AMP-activated protein kinase mediates mitochondrial fission in response to energy stress

    Get PDF
    Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA–linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)–activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission

    Breaking before branching

    No full text

    Revendication et empathie

    No full text
    J. L. Courchet, P. H. Maucorps, J. P. Petard : Soziales Fordem und Einfühlung. Eine auf der sozialen Forderung beruhende Soziotherapie ist erfolgreich bei verschiedenen Gruppen von Psychotikern angewandt worden. Die Kranken gehorten sehr unbegiinstigten sozio-beruflichen Kategorien an und die Behandlung zielte darauf hin, ihr Einfuhlungsvermogen zu entwickeln. Ihre Fortschritte konnten teilweise durch biologische Untersuchungen bestätigt werden, was eine Verbindung zwischen biologischer Hemmung und Hemmung in den zwischenmenschlichen Beziehungen zeigt.J. L. Courchet, P. H. Maucorps, J. P. Petard : Assertion and empathy. A sociotherapy based on social assertion was successfully conducted in the case of several groups of psychotics belonging to the most unfavored type of socio-professional category, in order to develop their empathie faculties. The patiensť progress was partly corroborated by biological measures establishing a relation between biological inhibition and the inhibition in personal relations.J. L. Courchet, P. H. Maucorps, J. P. Petard : Revendicación y empatia. Una socioterapía estribada en la revendicación social fué felizmente llevada a cabo con varios grupos de psicóticos que pertenecian a las categorias socioprofesionales más desgraciadas para desarrollar sus facultades empáticas. Los progresos de los enfermos pudieron er corroborados en mayor parte por medidas biológicas, lo que establece una conexión entre inhibición biológicae inhibición de la relaciones interpersonales.Courchet J.-L., Maucorps Paul-H., Pétard J.-P. Revendication et empathie. In: Revue française de sociologie, 1964, 5-4. pp. 447-451

    AMP-activated protein kinase mediates mitochondrial fission in response to energy stress

    No full text
    International audienc

    AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress

    Get PDF
    Mammalian brain connectivity requires the coordinated production and migration of billions of neurons and the formation of axons and dendrites. The LKB1/Par4 kinase is required for axon formation during cortical development in vivo partially through its ability to activate SAD-A/B kinases. LKB1 is a master kinase phosphorylating and activating at least 11 other serine/threonine kinases including the metabolic sensor AMP-activated protein kinase (AMPK), which defines this branch of the kinome. A recent study using a gene-trap allele of the β1 regulatory subunit of AMPK suggested that AMPK catalytic activity is required for proper brain development including neurogenesis and neuronal survival. We used a genetic loss-of-function approach producing AMPKα1/α2-null cortical neurons to demonstrate that AMPK catalytic activity is not required for cortical neurogenesis, neuronal migration, polarization, or survival. However, we found that application of metformin or AICAR, potent AMPK activators, inhibit axogenesis and axon growth in an AMPK-dependent manner. We show that inhibition of axon growth mediated by AMPK overactivation requires TSC1/2-mediated inhibition of the mammalian target of rapamycin (mTOR) signaling pathway. Our results demonstrate that AMPK catalytic activity is not required for early neural development in vivo but its overactivation during metabolic stress impairs neuronal polarization in a mTOR-dependent manner

    Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth

    No full text
    Protein ubiquitination is a core regulatory determinant of neural development. Previous studies have indicated that the Nedd4-family E3 ubiquitin ligases Nedd4-1 and Nedd4-2 may ubiquitinate phosphatase and tensin homolog (PTEN) and thereby regulate axonal growth in neurons. Using conditional knockout mice, we show here that Nedd4-1 and Nedd4-2 are indeed required for axonal growth in murine central nervous system neurons. However, in contrast to previously published data, we demonstrate that PTEN is not a substrate of Nedd4-1 and Nedd4-2, and that aberrant PTEN ubiquitination is not involved in the impaired axon growth upon deletion of Nedd4-1 and Nedd4-2. Rather, PTEN limits Nedd4-1 protein levels by modulating the activity of mTORC1, a protein complex that controls protein synthesis and cell growth. Our data demonstrate that Nedd4-family E3 ligases promote axonal growth and branching in the developing mammalian brain, where PTEN is not a relevant substrate. Instead, PTEN controls neurite growth by regulating Nedd4-1 expression

    16p11.2 haploinsufficiency reduces mitochondrial biogenesis in brain endothelial cells and alters brain metabolism in adult mice

    No full text
    Summary: Neurovascular abnormalities in mouse models of 16p11.2 deletion autism syndrome are reminiscent of alterations reported in murine models of glucose transporter deficiency, including reduced brain angiogenesis and behavioral alterations. Yet, whether cerebrovascular alterations in 16p11.2df/+ mice affect brain metabolism is unknown. Here, we report that anesthetized 16p11.2df/+ mice display elevated brain glucose uptake, a phenomenon recapitulated in mice with endothelial-specific 16p11.2 haplodeficiency. Awake 16p11.2df/+ mice display attenuated relative fluctuations of extracellular brain glucose following systemic glucose administration. Targeted metabolomics on cerebral cortex extracts reveals enhanced metabolic responses to systemic glucose in 16p11.2df/+ mice that also display reduced mitochondria number in brain endothelial cells. This is not associated with changes in mitochondria fusion or fission proteins, but 16p11.2df/+ brain endothelial cells lack the splice variant NT-PGC-1α, suggesting defective mitochondrial biogenesis. We propose that altered brain metabolism in 16p11.2df/+ mice is compensatory to endothelial dysfunction, shedding light on previously unknown adaptative responses
    corecore