4 research outputs found

    CaractƩrisation et explicitation des modifications des signatures ionomiques des vƩgƩtaux induites par diffƩrentes carences minƩrales

    No full text
    It has been suggested the composition of the ionome (i.e. macro, micro and beneficial elements) of plant tissues resulting from multiple interactions between nutrients and affected more globally by plant environment, can reveal the physiological status of plants. The aims of this study were to highlight the ionomic modification, potential interactions between elements and ionomic signatures resulting from different mineral deficiencies in Brassica napus (a dicot) and Triticum aestivum (a monocot). Thus, plants were subjected to 18 individual element deficiencies (N, Mg, P, S, K, Ca, B, Cl, Mn, Fe, Ni, Cu, Zn, Mo, Na, Si, Co, and Se) and harvested before growth reduction. The main objectives were i) to analyze the ionomic signatures of plant tissues and to compare the response of both species to different mineral deficiencies, ii) to identify some potential metabolic pathways, iii) to characterize in Brassica napus, the molecular responses (transcriptomic and metabolomics) to each macronutrient deficiency, focusing to the roots, the first tissue facing the macronutrient deficiencies.In both species, the main results revealed numerous elemental interactions, some being already described in the literature, such as a strong increase of Mo and Se uptake under S deprivation, a strong increase of Na uptake under K deficiency or of divalent cations under Fe deprivation. These ionomic modifications could be the consequence of the up-regulation of non-specific root transporters, thus increasing the uptake of other elements available in nutrient solutions. Our study also identified original interactions, such as the increase of vanadium uptake in S-deficient plants, probably resulting from an overexpression of root sulfate transporters, confirmed in particular by the ionomic analysis of Arabidopsis knockout lines Sultr1;1 and Sultr1;2. Another original, but negative interaction between N and Na has been shown and suggests that Na transport could be functionally linked to N uptake. This hypothesis was supported by ionomic analysis of Arabidopsis knockout lines for genes encoding nitrate transporters (nrt1.1 and nrt2.1). These interactions between elements led to the identification of potentially specific ionomic signatures of each deficiency, that were then compared between Brassica napus and Triticum aestivum. Finally, in macronutrient-deficient rapeseed roots, specific and common molecular processes were identified using broad transcriptomic and metabolomic approaches. We were then able to identify a set of differentially expressed genes and metabolomic profiles that were specific to each macronutrient deficiency, which could be used for early diagnosis of each nutritional deficiency.La composition du ionome (i.e. macro, micro et eĢleĢments beĢneĢfiques) des tissus veĢgeĢtaux reĢsultant de multiples interactions entre eĢleĢments mais plus globalement avec lā€™environnement, est aĢ€ meĢ‚me de reĢveĢler l'eĢtat physiologique des plantes. Cette eĢtude vise aĢ€ mettre en eĢvidence les modifications ionomiques, les interactions potentielles entre eĢleĢments et les signatures ionomiques reĢsultant de diffeĢrentes carences mineĢrales chez Brassica napus (une dicotyleĢdone) et Triticum aestivum (une monocotyleĢdone). Ainsi, les plantes ont eĢteĢ soumises aĢ€ 18 carences nutritionnelles individuelles (N, Mg, P, S, K, Ca, B, Cl, Mn, Fe, Ni, Cu, Zn, Mo, Na, Si, Co et Se) et reĢcolteĢes avant la reĢduction de leur croissance. Les principaux objectifs eĢtaient i) d'analyser les signatures ionomiques des tissus veĢgeĢtaux et de comparer la reĢponse des deux espeĢ€ces aux diffeĢrentes carences mineĢrales, ii) d'identifier certaines voies meĢtaboliques sous-jacentes et enfin iii) de caracteĢriser chez Brassica napus, les reĢponses moleĢculaires (transcriptomiques et meĢtabolomiques) aĢ€ chaque carence en macroeĢleĢments en se focalisant au niveau des racines, le premier organe exposeĢ aĢ€ lā€™absence de disponibiliteĢ en macroeĢleĢments.Chez ces deux espeĢ€ces, les principaux reĢsultats ont reĢveĢleĢ des interactions eĢleĢmentaires dont certaines sont deĢcrites dans la litteĢrature, telles qu'une forte augmentation de l'absorption du Mo et du Se lors d'une carence en S, une absorption accrue de Na lors dā€™une privation en K ou des cations divalents en cas de carence en Fe. Ces modifications ionomiques pourraient eĢ‚tre la conseĢquence de la surexpression de transporteurs racinaires non speĢcifiques, augmentant ainsi l'absorption d'autres eĢleĢments disponibles dans les solutions nutritives. Notre eĢtude a eĢgalement montreĢ dā€™autres interactions plus originales et notamment lā€™augmentation de l'absorption du vanadium chez les plantes soumises aĢ€ une carence en S, reĢsultant probablement d'une surexpression des transporteurs racinaires de sulfate, confirmeĢe notamment par l'analyse ionomique de ligneĢes d'Arabidopsis knock-out sultr1;1 et sultr1;2. Une autre interaction originale, mais neĢgative, entre N et Na a eĢteĢ deĢmontreĢe suggeĢrant que le transport de Na pourrait eĢ‚tre fonctionnellement lieĢ aĢ€ l'absorption de N. Cette hypotheĢ€se a eĢteĢ soutenue par lā€™analyse ionomique des ligneĢes d'Arabidopsis knock-out pour les geĢ€nes codant les transporteurs de nitrate (nrt1.1 et nrt2.1). Ces interactions entre eĢleĢments ont conduit aĢ€ lā€™identification des signatures ionomiques potentiellement speĢcifiques de chaque carence, qui ont eĢteĢ compareĢes entre les deux espeĢ€ces veĢgeĢtales consideĢreĢes. Enfin, dans les racines de colzas carenceĢs en macroeĢleĢments, des processus moleĢculaires speĢcifiques et communs ont eĢteĢ identifieĢs en utilisant des approches transcriptomiques et meĢtabolomiques. Ces approches ont eĢgalement permis dā€™eĢtablir des listes de geĢ€nes diffeĢrentiellement exprimeĢs et des profils meĢtabolomiques speĢcifiques de chaque privation en macroeĢleĢments, susceptibles dā€™eĢ‚tre utiliseĢs afin de diagnostiquer preĢcocement chaque carence nutritionnelle

    Characterization of the ionomic signatures of plants submitted to nutritional deprivation

    No full text
    La composition du ionome (i.e. macro, micro et eĢleĢments beĢneĢfiques) des tissus veĢgeĢtaux reĢsultant de multiples interactions entre eĢleĢments mais plus globalement avec lā€™environnement, est aĢ€ meĢ‚me de reĢveĢler l'eĢtat physiologique des plantes. Cette eĢtude vise aĢ€ mettre en eĢvidence les modifications ionomiques, les interactions potentielles entre eĢleĢments et les signatures ionomiques reĢsultant de diffeĢrentes carences mineĢrales chez Brassica napus (une dicotyleĢdone) et Triticum aestivum (une monocotyleĢdone). Ainsi, les plantes ont eĢteĢ soumises aĢ€ 18 carences nutritionnelles individuelles (N, Mg, P, S, K, Ca, B, Cl, Mn, Fe, Ni, Cu, Zn, Mo, Na, Si, Co et Se) et reĢcolteĢes avant la reĢduction de leur croissance. Les principaux objectifs eĢtaient i) d'analyser les signatures ionomiques des tissus veĢgeĢtaux et de comparer la reĢponse des deux espeĢ€ces aux diffeĢrentes carences mineĢrales, ii) d'identifier certaines voies meĢtaboliques sous-jacentes et enfin iii) de caracteĢriser chez Brassica napus, les reĢponses moleĢculaires (transcriptomiques et meĢtabolomiques) aĢ€ chaque carence en macroeĢleĢments en se focalisant au niveau des racines, le premier organe exposeĢ aĢ€ lā€™absence de disponibiliteĢ en macroeĢleĢments.Chez ces deux espeĢ€ces, les principaux reĢsultats ont reĢveĢleĢ des interactions eĢleĢmentaires dont certaines sont deĢcrites dans la litteĢrature, telles qu'une forte augmentation de l'absorption du Mo et du Se lors d'une carence en S, une absorption accrue de Na lors dā€™une privation en K ou des cations divalents en cas de carence en Fe. Ces modifications ionomiques pourraient eĢ‚tre la conseĢquence de la surexpression de transporteurs racinaires non speĢcifiques, augmentant ainsi l'absorption d'autres eĢleĢments disponibles dans les solutions nutritives. Notre eĢtude a eĢgalement montreĢ dā€™autres interactions plus originales et notamment lā€™augmentation de l'absorption du vanadium chez les plantes soumises aĢ€ une carence en S, reĢsultant probablement d'une surexpression des transporteurs racinaires de sulfate, confirmeĢe notamment par l'analyse ionomique de ligneĢes d'Arabidopsis knock-out sultr1;1 et sultr1;2. Une autre interaction originale, mais neĢgative, entre N et Na a eĢteĢ deĢmontreĢe suggeĢrant que le transport de Na pourrait eĢ‚tre fonctionnellement lieĢ aĢ€ l'absorption de N. Cette hypotheĢ€se a eĢteĢ soutenue par lā€™analyse ionomique des ligneĢes d'Arabidopsis knock-out pour les geĢ€nes codant les transporteurs de nitrate (nrt1.1 et nrt2.1). Ces interactions entre eĢleĢments ont conduit aĢ€ lā€™identification des signatures ionomiques potentiellement speĢcifiques de chaque carence, qui ont eĢteĢ compareĢes entre les deux espeĢ€ces veĢgeĢtales consideĢreĢes. Enfin, dans les racines de colzas carenceĢs en macroeĢleĢments, des processus moleĢculaires speĢcifiques et communs ont eĢteĢ identifieĢs en utilisant des approches transcriptomiques et meĢtabolomiques. Ces approches ont eĢgalement permis dā€™eĢtablir des listes de geĢ€nes diffeĢrentiellement exprimeĢs et des profils meĢtabolomiques speĢcifiques de chaque privation en macroeĢleĢments, susceptibles dā€™eĢ‚tre utiliseĢs afin de diagnostiquer preĢcocement chaque carence nutritionnelle.It has been suggested the composition of the ionome (i.e. macro, micro and beneficial elements) of plant tissues resulting from multiple interactions between nutrients and affected more globally by plant environment, can reveal the physiological status of plants. The aims of this study were to highlight the ionomic modification, potential interactions between elements and ionomic signatures resulting from different mineral deficiencies in Brassica napus (a dicot) and Triticum aestivum (a monocot). Thus, plants were subjected to 18 individual element deficiencies (N, Mg, P, S, K, Ca, B, Cl, Mn, Fe, Ni, Cu, Zn, Mo, Na, Si, Co, and Se) and harvested before growth reduction. The main objectives were i) to analyze the ionomic signatures of plant tissues and to compare the response of both species to different mineral deficiencies, ii) to identify some potential metabolic pathways, iii) to characterize in Brassica napus, the molecular responses (transcriptomic and metabolomics) to each macronutrient deficiency, focusing to the roots, the first tissue facing the macronutrient deficiencies.In both species, the main results revealed numerous elemental interactions, some being already described in the literature, such as a strong increase of Mo and Se uptake under S deprivation, a strong increase of Na uptake under K deficiency or of divalent cations under Fe deprivation. These ionomic modifications could be the consequence of the up-regulation of non-specific root transporters, thus increasing the uptake of other elements available in nutrient solutions. Our study also identified original interactions, such as the increase of vanadium uptake in S-deficient plants, probably resulting from an overexpression of root sulfate transporters, confirmed in particular by the ionomic analysis of Arabidopsis knockout lines Sultr1;1 and Sultr1;2. Another original, but negative interaction between N and Na has been shown and suggests that Na transport could be functionally linked to N uptake. This hypothesis was supported by ionomic analysis of Arabidopsis knockout lines for genes encoding nitrate transporters (nrt1.1 and nrt2.1). These interactions between elements led to the identification of potentially specific ionomic signatures of each deficiency, that were then compared between Brassica napus and Triticum aestivum. Finally, in macronutrient-deficient rapeseed roots, specific and common molecular processes were identified using broad transcriptomic and metabolomic approaches. We were then able to identify a set of differentially expressed genes and metabolomic profiles that were specific to each macronutrient deficiency, which could be used for early diagnosis of each nutritional deficiency

    CaractƩrisation et explicitation des modifications des signatures ionomiques des vƩgƩtaux induites par diffƩrentes carences minƩrales

    No full text
    It has been suggested the composition of the ionome (i.e. macro, micro and beneficial elements) of plant tissues resulting from multiple interactions between nutrients and affected more globally by plant environment, can reveal the physiological status of plants. The aims of this study were to highlight the ionomic modification, potential interactions between elements and ionomic signatures resulting from different mineral deficiencies in Brassica napus (a dicot) and Triticum aestivum (a monocot). Thus, plants were subjected to 18 individual element deficiencies (N, Mg, P, S, K, Ca, B, Cl, Mn, Fe, Ni, Cu, Zn, Mo, Na, Si, Co, and Se) and harvested before growth reduction. The main objectives were i) to analyze the ionomic signatures of plant tissues and to compare the response of both species to different mineral deficiencies, ii) to identify some potential metabolic pathways, iii) to characterize in Brassica napus, the molecular responses (transcriptomic and metabolomics) to each macronutrient deficiency, focusing to the roots, the first tissue facing the macronutrient deficiencies.In both species, the main results revealed numerous elemental interactions, some being already described in the literature, such as a strong increase of Mo and Se uptake under S deprivation, a strong increase of Na uptake under K deficiency or of divalent cations under Fe deprivation. These ionomic modifications could be the consequence of the up-regulation of non-specific root transporters, thus increasing the uptake of other elements available in nutrient solutions. Our study also identified original interactions, such as the increase of vanadium uptake in S-deficient plants, probably resulting from an overexpression of root sulfate transporters, confirmed in particular by the ionomic analysis of Arabidopsis knockout lines Sultr1;1 and Sultr1;2. Another original, but negative interaction between N and Na has been shown and suggests that Na transport could be functionally linked to N uptake. This hypothesis was supported by ionomic analysis of Arabidopsis knockout lines for genes encoding nitrate transporters (nrt1.1 and nrt2.1). These interactions between elements led to the identification of potentially specific ionomic signatures of each deficiency, that were then compared between Brassica napus and Triticum aestivum. Finally, in macronutrient-deficient rapeseed roots, specific and common molecular processes were identified using broad transcriptomic and metabolomic approaches. We were then able to identify a set of differentially expressed genes and metabolomic profiles that were specific to each macronutrient deficiency, which could be used for early diagnosis of each nutritional deficiency.La composition du ionome (i.e. macro, micro et eĢleĢments beĢneĢfiques) des tissus veĢgeĢtaux reĢsultant de multiples interactions entre eĢleĢments mais plus globalement avec lā€™environnement, est aĢ€ meĢ‚me de reĢveĢler l'eĢtat physiologique des plantes. Cette eĢtude vise aĢ€ mettre en eĢvidence les modifications ionomiques, les interactions potentielles entre eĢleĢments et les signatures ionomiques reĢsultant de diffeĢrentes carences mineĢrales chez Brassica napus (une dicotyleĢdone) et Triticum aestivum (une monocotyleĢdone). Ainsi, les plantes ont eĢteĢ soumises aĢ€ 18 carences nutritionnelles individuelles (N, Mg, P, S, K, Ca, B, Cl, Mn, Fe, Ni, Cu, Zn, Mo, Na, Si, Co et Se) et reĢcolteĢes avant la reĢduction de leur croissance. Les principaux objectifs eĢtaient i) d'analyser les signatures ionomiques des tissus veĢgeĢtaux et de comparer la reĢponse des deux espeĢ€ces aux diffeĢrentes carences mineĢrales, ii) d'identifier certaines voies meĢtaboliques sous-jacentes et enfin iii) de caracteĢriser chez Brassica napus, les reĢponses moleĢculaires (transcriptomiques et meĢtabolomiques) aĢ€ chaque carence en macroeĢleĢments en se focalisant au niveau des racines, le premier organe exposeĢ aĢ€ lā€™absence de disponibiliteĢ en macroeĢleĢments.Chez ces deux espeĢ€ces, les principaux reĢsultats ont reĢveĢleĢ des interactions eĢleĢmentaires dont certaines sont deĢcrites dans la litteĢrature, telles qu'une forte augmentation de l'absorption du Mo et du Se lors d'une carence en S, une absorption accrue de Na lors dā€™une privation en K ou des cations divalents en cas de carence en Fe. Ces modifications ionomiques pourraient eĢ‚tre la conseĢquence de la surexpression de transporteurs racinaires non speĢcifiques, augmentant ainsi l'absorption d'autres eĢleĢments disponibles dans les solutions nutritives. Notre eĢtude a eĢgalement montreĢ dā€™autres interactions plus originales et notamment lā€™augmentation de l'absorption du vanadium chez les plantes soumises aĢ€ une carence en S, reĢsultant probablement d'une surexpression des transporteurs racinaires de sulfate, confirmeĢe notamment par l'analyse ionomique de ligneĢes d'Arabidopsis knock-out sultr1;1 et sultr1;2. Une autre interaction originale, mais neĢgative, entre N et Na a eĢteĢ deĢmontreĢe suggeĢrant que le transport de Na pourrait eĢ‚tre fonctionnellement lieĢ aĢ€ l'absorption de N. Cette hypotheĢ€se a eĢteĢ soutenue par lā€™analyse ionomique des ligneĢes d'Arabidopsis knock-out pour les geĢ€nes codant les transporteurs de nitrate (nrt1.1 et nrt2.1). Ces interactions entre eĢleĢments ont conduit aĢ€ lā€™identification des signatures ionomiques potentiellement speĢcifiques de chaque carence, qui ont eĢteĢ compareĢes entre les deux espeĢ€ces veĢgeĢtales consideĢreĢes. Enfin, dans les racines de colzas carenceĢs en macroeĢleĢments, des processus moleĢculaires speĢcifiques et communs ont eĢteĢ identifieĢs en utilisant des approches transcriptomiques et meĢtabolomiques. Ces approches ont eĢgalement permis dā€™eĢtablir des listes de geĢ€nes diffeĢrentiellement exprimeĢs et des profils meĢtabolomiques speĢcifiques de chaque privation en macroeĢleĢments, susceptibles dā€™eĢ‚tre utiliseĢs afin de diagnostiquer preĢcocement chaque carence nutritionnelle

    Specificity and Plasticity of the Functional Ionome of Brassica napus and Triticum aestivum Subjected to Macronutrient Deprivation

    No full text
    The composition of the functional ionome was studied in Brassica napus and Triticum aestivum with respect to the response of 20 elements under macronutrient deprivation. Analysis of relative root contents showed that some nutrients, such as Fe, Ni, Cu, Na, V, and Co, were largely sequestered in roots. After 10 days of deprivation of each one of these 6 macronutrients, plant growth was similar to control plants, and this was probably the result of remobilization from roots (Mg and Ca) or old leaves (N, P, K, S). Some tissue concentrations and net nutrient uptakes into roots were either decreased or increased, revealing multiple interactions (93 in wheat, 66 in oilseed rape) that were common to both species (48) or were species specific. While some interactions have been previously described (increased uptake of Na under K deficiency; or increased uptake of Mo and Se under S deficiency), a number of new interactions were found and some key mechanisms underlying their action have been proposed from analysis of Arabidopsis mutants. For example, nitrate uptake seemed to be functionally linked to Na(influx, while the uptake of vanadium was probably mediated by sulfate transporters whose expression was stimulated during S deprivation
    corecore