12 research outputs found

    In-vitro and in-vivo evidence for uncoupling of BCR internalization and signaling in chronic lymphocytic leukemia

    Get PDF
    B-cell receptor activation, occurring within lymph nodes, plays a key role in the pathogenesis of chronic lymphocytic leukemia and is linked to prognosis. As well as activation of downstream signaling, receptor ligation triggers internalization, transit to acidified endosomes and degradation of ligand-receptor complexes. In the present study we investigated the relationship between these two processes in normal and leukemic B-cells. We found that leukemic B-cells, particularly anergic cases lacking the capacity to initiate downstream signaling, internalize and accumulate ligand in acidified endosomes more efficiently than normal B-cells. Furthermore, ligation of either surface CD79B, a Bcell receptor component required for downstream signaling, or surface IgM by cognate agonistic antibody, showed that the two molecules internalize independently of each other in leukemic but not normal B-cells. Since association with surface CD79B is required for surface retention of IgM, this suggests that uncoupling of B-cell receptor internalization from signaling may be due to dissociation of these two molecules in leukemic cells. Comparison of lymph node with peripheral blood cells from chronic lymphocytic leukemia patients showed that, despite recent B-cell receptor activation, lymph node B-cells expressed higher levels of surface IgM. This surprising finding suggests that the B-cell receptors of lymph node and peripheral blood derived leukemic cells might be functionally distinct. Finally, long-term therapy with the Bruton’s tyrosine kinase inhibitors ibrutinib or acalabrutinib resulted in a switch to an anergic pattern of B-cell receptor function with reduced signaling capacity, surface IgM expression and more efficient internalization

    Measurement of CD4+ and CD8+ T-Lymphocyte Cytokine Secretion and Gene Expression Changes in p-Phenylenediamine Allergic Patients and Tolerant Individuals

    Get PDF
    Factors predisposing to individual susceptibility to contact allergic dermatitis are ill defined. This study was designed to characterize the response of allergic and tolerant individuals’ T-lymphocytes after exposure to p-phenylenediamine (PPD). Peripheral blood mononuclear cells (PBMCs) from allergic patients proliferated when treated with PPD and Bandrowski's base (BB) and secreted IL-1α, -1β, -4, -5, -6, -8, -10, and -13; IFN-γ; tumor necrosis factor-α; MIP-1α/β; MCP-1 (monocyte chemotactic protein-1); and RANTES. PBMCs from tolerant individuals were stimulated to proliferate only with BB, and they secreted significantly lower levels of Th2 cytokines. Principal component analysis showed that genes are differentially expressed between the patient groups. A network-based analysis of microarray data showed upregulation of T helper type 2 (Th2) gene pathways, including IL-9, in allergic patients, but a regulatory gene profile in tolerant individuals. Real-time PCR confirmed the observed increase in Th2 cytokine gene transcription in allergic patients. Purified CD4+ and CD8+ T cells from allergic patients were stimulated to proliferate and secrete Th2 cytokines following antigen exposure. Only CD4+ T cells from tolerant individuals were stimulated by BB, and levels of Th2 cytokines were 80% lower. The nature of the antigenic determinant stimulating PBMCs and levels of Th2 cytokines, including IL-9, was confirmed in a validation cohort. These studies show increased activity of Th2 cytokines in CD4+ and CD8+ T cells from individuals with allergic contact dermatitis

    Identification of proliferative and non-proliferative subpopulations of leukemic cells in CLL

    Get PDF
    Pathogenesis in chronic lymphocytic leukemia (CLL) is strongly linked to the potential for leukemic cells to migrate to and proliferate within lymph-nodes. Previous in vivo studies suggest that all leukemic cells participate in cycles of migration and proliferation. In vitro studies, however, have shown heterogeneous migration patterns. To investigate tumor subpopulation kinetics, we performed in vivo isotope-labeling studies in ten patients with IgVH-mutated CLL (M-CLL). Using deuterium-labeled glucose, we investigated proliferation in sub-populations defined by CXCR4/CD5 and surface (sIgM) expression. Mathematical modeling was performed to test the likelihood that leukemic cells exist as distinct sub-populations or as a single population with the same proliferative capacity. Further labeling studies in two patients with M-CLL commencing idelalisib investigated the effect of B-cell receptor (BCR) antagonists on sub-population kinetics. Modeling revealed that data were more consistent with a model comprising distinct sub-populations (p = 0.008) with contrasting, characteristic kinetics. Following idelalisib therapy, similar labeling suppression across all sub-populations suggested that the most proliferative subset is the most sensitive to treatment. As the quiescent sub-population precedes treatment, selection likely explains the persistence of such residual non-proliferating populations during BCR-antagonist therapy. These findings have clinical implications for discontinuation of long-term BCR-antagonist treatment in selected patients

    Viral population analysis and minority-variant detection using short read next-generation sequencing

    Get PDF
    RNA viruses within infected individuals exist as a population of evolutionary-related variants. Owing to evolutionary change affecting the constitution of this population, the frequency and/or occurrence of individual viral variants can show marked or subtle fluctuations. Since the development of massively parallel sequencing platforms, such viral populations can now be investigated to unprecedented resolution. A critical problem with such analyses is the presence of sequencing-related errors that obscure the identification of true biological variants present at low frequency. Here, we report the development and assessment of the Quality Assessment of Short Read (QUASR) Pipeline (http://sourceforge.net/projects/quasr) specific for virus genome short read analysis that minimizes sequencing errors from multiple deep-sequencing platforms, and enables post-mapping analysis of the minority variants within the viral population. QUASR significantly reduces the error-related noise in deep-sequencing datasets, resulting in increased mapping accuracy and reduction of erroneous mutations. Using QUASR, we have determined influenza virus genome dynamics in sequential samples from an in vitro evolution of 2009 pandemic H1N1 (A/H1N1/09) influenza from samples sequenced on both the Roche 454 GSFLX and Illumina GAIIx platforms. Importantly, concordance between the 454 and Illumina sequencing allowed unambiguous minority-variant detection and accurate determination of virus population turnover in vitr

    Activation of Human Dendritic Cells by p

    No full text

    The evolutionary dynamics of influenza A virus adaptation to mammalian hosts

    No full text
    Few questions on infectious disease are more important than understanding how and why avian influenza A viruses successfully emerge in mammalian populations, yet little is known about the rate and nature of the virus’ genetic adaptation in new hosts. Here, we measure, for the first time, the genomic rate of adaptive evolution of swine influenza viruses (SwIV) that originated in birds. By using a curated dataset of more than 24 000 human and swine influenza gene sequences, including 41 newly characterized genomes, we reconstructed the adaptive dynamics of three major SwIV lineages (Eurasian, EA; classical swine, CS; triple reassortant, TR). We found that, following the transfer of the EA lineage from birds to swine in the late 1970s, EA virus genes have undergone substantially faster adaptive evolution than those of the CS lineage, which had circulated among swine for decades. Further, the adaptation rates of the EA lineage antigenic haemagglutinin and neuraminidase genes were unexpectedly high and similar to those observed in human influenza A. We show that the successful establishment of avian influenza viruses in swine is associated with raised adaptive evolution across the entire genome for many years after zoonosis, reflecting the contribution of multiple mutations to the coordinated optimization of viral fitness in a new environment. This dynamics is replicated independently in the polymerase genes of the TR lineage, which established in swine following separate transmission from non-swine hosts
    corecore