8 research outputs found

    Language and nonverbal auditory processing in the occipital cortex of individuals who are congenitally blind due to anophthalmia

    No full text
    Individuals with congenital blindness due to bilateral anophthalmia offer a unique opportunity to examine cross-modal plasticity in the complete absence of any stimulation of the ‘visual’ pathway even during development in utero. Our previous work has suggested that this complete sensory deafferentation results in different patterns of reorganisation compared with those seen in other early blind populations. Here, we further test the functional specialisation of occipital cortex in six well-studied cases with anophthalmia. Whole brain functional MRI was obtained while these human participants and a group of sighted controls performed two experiments involving phonological and semantic processing of words (verbal experiment) and spatial and identity processing of piano chords (nonverbal experiment). Both experiments were predicted to show a dorsal-ventral difference in activity based on the specific task performed. All tasks evoked activation in occipital cortex in the individuals with anophthalmia but not in the sighted controls. For the verbal experiment, both dorsal and ventral occipital areas were strongly activated by the phonological and semantic tasks in anophthalmia. For the nonverbal experiment, both the spatial and the identity task robustly activated the dorsal occipital area V3a but showed inconsistent activity elsewhere in the occipital lobe. V1 was most strongly activated by the verbal tasks, showing greater activity on the left for the verbal task relative to the nonverbal one. For individual anophthalmic participants, however, activity in V1 was inconsistent across tasks and hemispheres with many participants showing activity levels in the control range, which was not significantly above baseline. Despite the homogeneous nature of the cause of blindness in the anophthalmic group, there remain differences in patterns of activation among the individuals with this condition. Investigation at the case level might further our understanding of how post-natal experiences shape functional reorganisation in deafferented cortex

    Spatial scale of correlated signals in 7T BOLD imaging

    No full text
    The spatial distribution of signals from magnetic resonance imaging (MRI) using measures of Blood Oxygen Level Dependent (BOLD) activations presents a fundamental limit on the ability of MRI to resolve the neural signals from the brain. Here we show that the multiple samples of low-level BOLD activity comprise a form of neural “imaging dust” with distinct spatial characteristics. We apply the distance-dependent measurement of variance to spatial maps of BOLD signals to deliver a new approach to estimating the empirical point-spread function (PSF) of MRI. We show that these new estimates are similar to earlier measures of the PSF of high field 7-T imaging, but deliver the advantage that they are specific to each individual tested in a single scanning session. We explore various potential applications of this approach

    From DSL to HPC Component-Based Runtime: A Multi-Stencil DSL Case Study

    Get PDF
    International audienceHigh performance architectures evolve continuously to be more powerful. Such architectures also usually become more difficult to use efficiently. As a scientist is not a low level and high performance programming expert, Domain Specific Languages (DSLs) are a promising solution to automatically and efficiently write high performance codes. However, if DSLs ease programming for scientists, maintainability and portability issues are transferred from scientists to DSL de- signers. This paper deals with an approach to improve main- tainability and programming productivity of DSLs through the generation of a component-based parallel runtime. To study it, the paper presents a DSL for multi-stencil pro- grams, that is evaluated on a real-case of shallow water equations

    The effect of congenital and acquired bilateral anophthalmia on brain structure

    No full text
    The aim of this study was to compare the pattern of changes in brain structure resulting from congenital and acquired bilateral anophthalmia. Brain structure was investigated using 3T magnetic resonance imaging (MRI) in Oxford (congenital) or Manchester (acquired). T1-weighted structural and diffusion-weighted scans were acquired from people with anophthalmia and sighted control participants. Differences in grey matter between the groups were quantified using voxel-based morphometry and differences in white matter microstructure using tract-based spatial statistics. Quantification of optic nerve volume and cortical thickness in visual regions was also performed in all groups. The optic nerve was reduced in volume in both anophthalmic populations, but to a greater extent in the congenital group and anophthalmia acquired at an early age. A similar pattern was found for the white matter microstructure throughout the occipitotemporal regions of the brain, suggesting a greater reduction of integrity with increasing duration of anophthalmia. In contrast, grey matter volume changes differed between the two groups, with the acquired anophthalmia group showing a decrease in the calcarine sulcus, corresponding to the area that would have been peripheral primary visual cortex. In contrast, the acquired anophthalmia group showed a decrease in grey matter volume in the calcarine sulcus corresponding to the area that would have been peripheral primary visual cortex. There are both qualitative and quantitative differences in structural brain changes in congenital and acquired anophthalmia, indicating differential effects of development and degeneration
    corecore