5 research outputs found

    Current status of lectin-based cancer diagnosis and therapy

    No full text
    Lectins are carbohydrate recognizing proteins originating from diverse origins in nature, including animals, plants, viruses, bacteria and fungus. Due to their exceptional glycan recognition property, they have found many applications in analytical chemistry, biotechnology and surface chemistry. This manuscript explores the current use of lectins for cancer diagnosis and therapy. Moreover, novel drug delivery strategies aiming at improving lectin’s stability, reducing their undesired toxicity and controlling their non-specific binding interactions are discussed. We also explore the nanotechnology application of lectins for cancer targeting and imaging. Although many investigations are being conducted in the field of lectinology, there is still a limited clinical translation of the major findings reported due to lectins stability and toxicity concerns. Therefore, new investigations of safe and effective drug delivery system strategies for lectins are warranted in order to take full advantage of these proteins

    Anti-HIV lectins and current delivery strategies

    No full text
    Lectins, a class of carbohydrate binding agents (CBAs), have been widely studied for their potential antiviral activity. In general, lectins exert their anti-HIV microbicidal activity by binding to viral envelope glycoproteins which hinders a proper interaction between the virus and its host, thereby preventing viral entry and replication processes. Several natural lectins extracted from plant, fungi, algae, bacteria and animals, as well as boronic acid-based synthetic lectins, have been investigated against the Human Immunodeficiency Virus (HIV). This manuscript discusses the nature of HIV envelope glycoprotein glycans and their implication in lectin antiviral activity for HIV/AIDS prevention. In addition, anti-HIV lectins and their carbohydrate specificity is reported. Furthermore, current formulations of anti-HIV lectins are presented to illustrate how to overcome delivery challenges. Although antiviral lectins will continue to occupy a major stage in future microbicide research, further investigation in this field should focus on novel delivery strategies and the clinical translation of CBAs
    corecore