16 research outputs found

    Specimen for high-temperature tensile tests

    Get PDF
    Split nut with internal taper to hold specially formed specimen composed of filaments of refractory material provides means for holding at high temperature and under tension so that performance evaluations may be made

    The application of encapsulation material stability data to photovoltaic module life assessment

    Get PDF
    For any piece of hardware that degrades when subject to environmental and application stresses, the route or sequence that describes the degradation process may be summarized in terms of six key words: LOADS, RESPONSE, CHANGE, DAMAGE, FAILURE, and PENALTY. Applied to photovoltaic modules, these six factors form the core outline of an expanded failure analysis matrix for unifying and integrating relevant material degradation data and analyses. An important feature of this approach is the deliberate differentiation between factors such as CHANGE, DAMAGE, and FAILURE. The application of this outline to materials degradation research facilitates the distinction between quantifying material property changes and quantifying module damage or power loss with their economic consequences. The approach recommended for relating material stability data to photovoltaic module life is to use the degree of DAMAGE to (1) optical coupling, (2) encapsulant package integrity, (3) PV circuit integrity or (4) electrical isolation as the quantitative criterion for assessing module potential service life rather than simply using module power loss

    Survey of materials for hydrazine propulsion systems in multicycle extended life applications

    Get PDF
    An assessment is presented of materials compatibility data for hydrazine monopropellant propulsion systems applicable to the Space Shuttle vehicle missions. Materials were evaluated for application over a 10-yr/100-mission operational lifetime with minimum refurbishment. A general materials compatibility rating for a broad range of materials and several propellants based primarily on static liquid propellant immersion testing and an in-depth evaluation of hydrazine decomposition as a function of purity, temperature, material, surface conditions, etc., are presented. The most promising polymeric material candidates for propellant diaphragms and seals appear to have little effect on increasing hydrazine decomposition rates, but the materials themselves do undergo changes in physical properties which can affect their 10-yr performance in multicycle applications. The available data on these physical properties of elastomeric materials as affected by exposure to hydrazine or related environments are presented

    Multislot film cooled pyrolytic graphite rocket nozzle Patent

    Get PDF
    Multislot film cooled pyrolytic graphite rocket nozzl

    Environmental isolation task

    Get PDF
    The failure-analysis process was organized into a more specific set of long-term degradation steps so that material property change can be differentiated from module damage and module failure. Increasing module performance and life are discussed. A polymeric aging computer model is discussed. Early detection of polymer surface reactions due to aging is reported

    Refractory thrust chambers for spacecraft engines Final report

    Get PDF
    Structural reliability tests on pyrolytic graphite and pyrolytic graphite alloys for use in liquid propellant rocket engine thrust chambers and nozzle

    Space storable thrustor investigation Final report

    Get PDF
    Design and performance of space storable liquid FLOX methane thrustor of refractory composite material

    Enclosure fire modeling

    Get PDF
    A fire characterization methodology is presented, which for the first time provides a unified analysis framework for the integration of all fire tests data on a common basis. Fire temperatures, smoke densities, toxic gas concentrations and heat fluxes to material properties, enclosure geometry, and ventilation factors are provided in this fire characterization approach. The fire characterization methodology was used to develop an enclosure fire hazards analysis procedure capable of predicting the probable course in fire prevention

    Propellant material compatibility program and results

    Get PDF
    The effects of long-term (up to 10 years) contact of inert materials with earth-storable propellants were studied for the purpose of designing chemical propulsion system components that can be used for current as well as future planetary spacecraft. The primary experimental work, and results to date are reported. Investigations include the following propellants: hydrazine, hydrazine-hydrazine nitrate blends, monomethyl-hydrazine, and nitrogen tetroxide. Materials include: aluminum alloys, corrosion-resistant steels, and titanium alloys. More than 700 test specimen capsules were placed in long-term storage testing at 43 C in the special material compatibility facility. Material ratings relative to the 10-year requirement have been assigned

    Applications of ethylene vinyl acetate as an encapsulation material for terrestrial photovoltaic modules

    Get PDF
    Terrestrial photovoltaic modules must undergo substantial reductions in cost in order to become economically attractive as practical devices for large scale production of electricity. Part of the cost reductions must be realized by the encapsulation materials that are used to package, protect, and support the solar cells, electrical interconnects, and other ancillary components. As many of the encapsulation materials are polymeric, cost reductions necessitate the use of low cost polymers. The performance and status of ethylene vinyl acetate, a low cost polymer that is being investigated as an encapsulation material for terrestrial photovoltaic modules, are described
    corecore