859 research outputs found

    Shear modulus and Dilatancy Softening in Granular Packings above Jamming

    Full text link
    We investigate experimentally the mechanical response of a monolayer of bi-disperse frictional grains to an inhomogeneous shear perturbation across the jamming transition. We inflate an intruder inside the packing and use photo-elasticity and tracking techniques to measure the induced shear strain and stresses at the grain scale. We quantify experimentally the constitutive relations for strain amplitudes as low as 0.001 and for a range of packing fractions within 2% variation around the jamming transition. At the transition strong nonlinear effects set in : both the shear modulus and the dilatancy shear-soften at small strain until a critical strain is reached where effective linearity is recovered. The dependencies of the critical strain and the associated critical stresses on the distance from jamming are extracted via scaling analysis. We check that the constitutive laws, when applied to the equations governing mechanical equilibrium, lead to the observed stress and strain profiles. These profiles exhibit a spatial crossover between an effective linear regime close to the inflater and the truly nonlinear regime away from it. The crossover length diverges at the jamming transition.Comment: 5 pages, 5 figure

    Multi-step self-guided pathways for shape-changing metamaterials

    Get PDF
    Multi-step pathways, constituted of a sequence of reconfigurations, are central to a wide variety of natural and man-made systems. Such pathways autonomously execute in self-guided processes such as protein folding and self-assembly, but require external control in macroscopic mechanical systems, provided by, e.g., actuators in robotics or manual folding in origami. Here we introduce shape-changing mechanical metamaterials, that exhibit self-guided multi-step pathways in response to global uniform compression. Their design combines strongly nonlinear mechanical elements with a multimodal architecture that allows for a sequence of topological reconfigurations, i.e., modifications of the topology caused by the formation of internal self-contacts. We realized such metamaterials by digital manufacturing, and show that the pathway and final configuration can be controlled by rational design of the nonlinear mechanical elements. We furthermore demonstrate that self-contacts suppress pathway errors. Finally, we demonstrate how hierarchical architectures allow to extend the number of distinct reconfiguration steps. Our work establishes general principles for designing mechanical pathways, opening new avenues for self-folding media, pluripotent materials, and pliable devices in, e.g., stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See https://youtu.be/8m1QfkMFL0I for an explanatory vide

    Non-reciprocity in Mechanical Metamaterials

    Get PDF

    Synthesis, metal complexation and biological evaluation of a novel semi-rigid bifunctional chelating agent for 99mTc labelling

    Get PDF
    A novel bifunctional chelating agent bearing an aromatic ring has been synthesised and characterised. This ligand formed well-defined oxorhenium complexes. The analogous 99mTcO-complex was obtained in an excellent yield with high radiochemical purity (>95%). The biodistribution of the 99mTo-complex after intravenous injection studied in normal rats showed that the activity was excreted mainly via renal-urinary pathway indicating its use for labelling peptides with 99mTc

    A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials

    Get PDF
    Article / Letter to editorLeids Instituut Onderzoek Natuurkund

    A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials

    Get PDF
    Article / Letter to editorLeids Instituut Onderzoek Natuurkund

    A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials

    Get PDF
    Article / Letter to editorLeids Instituut Onderzoek Natuurkund

    A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials

    Get PDF
    Article / Letter to editorLeids Instituut Onderzoek Natuurkund
    • …
    corecore