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The architecture of mechanical metamaterials
is designed to harness geometry [I, BH6], non-
linearity [2], [7H10] and topology [2, 12-HI5] to ob-
tain advanced functionalities such as shape mor-
phing [7, 9, 16H21], programmability [18, 22, 23]
and one-way propagation [2, 13, 14]. While a
purely geometric framework successfully captures
the physics of small systems under idealized con-
ditions, large systems or heterogeneous driving
conditions remain essentially unexplored. Here
we uncover strong anomalies in the mechanics
of a broad class of metamaterials, such as aux-
etics [I, (6, [24], shape-changers [16H21] or topo-
logical insulators [2, 12, 13}, 15]: a non-monotonic
variation of their stiffness with system size, and
the ability of textured boundaries to completely
alter their properties. These striking features
stem from the competition between rotation-
based deformations—relevant for small systems—
and ordinary elasticity, and are controlled by a
characteristic length scale which is entirely tun-
able by the architectural details. Our study pro-
vides new vistas for designing, controlling and
programming the mechanics of metamaterials in
the thermodynamic limit.

A central strategy for the design of metamaterials
leverages the notion of a mechanism, which is a collec-
tion of rigid elements linked by completely flexible hinges,
designed to allow for a collective, free rotational motion
of the elements. Mechanism-based metamaterials borrow
the geometric design of mechanisms, but instead of hinges
feature flexible parts which connect stiffer elements [I-
3,5, 9] 121 13, [T5HI8], 22] 23] 25, 26]. The tacit assumption
is then that the low-energy deformations of such meta-
materials are similar to the free motion of the underlying
mechanism, and the ability to control deformations by ge-
ometric design is the foundation for the unusual mechan-
ics of a wide variety of mechanical metamaterials. Such
mechanism-based metamaterials have mostly been stud-
ied for small systems and for homogeneous loads, where
the response indeed closely follows that of the underly-
ing mechanism. However, the physics of large systems, or
for inhomogeneous boundary conditions, remains largely
unexplored.

We first illustrate that deformations of mechanism-
based metamaterials deviate from those of their under-
lying mechanism under inhomogeneous forcing. Specifi-
cally, we consider point forcing of a paradigmatic meta-
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FIG. 1. Mechanism-based metamaterials. (a) A paradig-
matic example of a mechanism based metamaterial consist-
ing of rubber slab patterned with a regular array of holes
[1 [7, 9, (10} 23] 24]. Point-indentation excites a characteristic
diamond-platter pattern near the tip and more smooth defor-
mations further away (scale bar is 9 mm). (b) The rotating
squares mechanism [I] consists of counter rotating, hinged
rigid squares and underlies the design of the metamaterial
shown in panel (a). The deformation from the symmetric
state can be specified by a single angle Q. (¢) A zoom-in
reveals that the deformation field of the mechanism-based
metamaterial is highly textured, with the rotation 2 slowly
decaying away from the boundary.

material (Fig. la), which is based on a mechanism
consisting of counter-rotating hinged squares (Fig. 1b)
1, 7, @ M0, 23, 24]. Whereas the local deformations
mimic that of the underlying mechanism, at larger scales,
we observe that the counter-rotations slowly decay away
from the boundary (Fig. 1¢). This indicates elastic dis-
tortions of the underlying rotating square mechanism,
where no such decay can occur. In this example, 2D ef-
fects complicate the physics, and we therefore focus on
quasi-1D meta-chains, consisting of 2x N square elements
of diagonal L linked at their tips (Fig. 2a-b); whenever
convenient, we will express lengths in units of L. We
measure the linear response of these samples by forc-
ing the outer horizontal joints. Surprisingly, both ex-
periments and finite element (FEM) simulations show an
exponential decay of the mechanism-like rotations away
from the boundary when the meta-chain is stretched or
compressed (Fig. 2¢). This spatial decay defines a novel
characteristic length n* (Fig. 2c-inset), and suggests that
elastic distortions of the underlying mechanism are a gen-
eral feature of mechanism-based metamaterials.

A first striking consequence of these distortions
emerges when probing the effective stiffness of
mechanism-based metamaterials as function of sys-
tem size. While for elastic continua the effective spring
constant or stiffness is inversely proportional to the
linear size [27], experiments and finite element (FEM)
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FIG. 2. Anomalies in the stiffness and deformations
of meta-chains. (a) 3D printed meta-chain of length N,
thickness H = 7.5 mm and square diagonal L. = 17 mm;
the black ellipses are used for tracking positions and rota-
tions. (b) Hinge geometry defined by ¢ and w. (c) Rotation
field for a meta-chain of length N = 14 (See Methods). Ma-
roon (blue) symbols denote the data obtained from the upper
(lower) squares. Inset: The decay length converges to a well
defined value n* = 1.9 + 0.1 in the large system size limit.
(d) Stiffness as function of N (See Methods). Coloured sym-
bols denote experiments for odd (k,; orange) and even (ke;
blue) meta-chains, and dashed curves denote FEM simula-
tions, for £ = 1.7 mm, w = 1.7 mm. The stiffness k. peaks at
np = 6.0+ 0.1.

simulations of meta-chains reveal remarkable deviations
from this behaviour. For small systems we find that the
stiffness k, for odd N is much larger than the stiffness
k. for even N. Moreover, while k, decays monotonously
with N, k. initially increases with N. Eventually the
stiffness k. peaks at length n,, and for larger N, k.
approaches k, and both decay with system size (Fig. 2d).
This anomalous size dependence is a robust feature—we
have numerically determined the size dependent stiffness
for the 2D metamaterial shown in Fig. 1, as well as a 3D
generalization of these [I8], and find that these exhibit
a similar peak in stiffness (see Extended Data Figure )

The stiffness anomaly reflects the hybrid nature of
mechanism-based metamaterials, as can be seen by com-
paring two simple models. While a chain consisting of N
unit springs of stiffness  in series has a global spring con-
stant k that is inversely proportional to the system size
N: k = k/N, the stiffness of a rotating squares chain
where all hinges are dressed by torsional springs of stiff-
ness Cy, [2,[16], 23] does not decay with N (See Supplemen-
tary Information). Specifically, for even N, the local rota-
tion € and globally applied deformation u are of the same
order, and the spring constant k. ~ N — longer chains
are thus stiffer in this model. For odd N, the counter
rotating motions cancel in leading order, so that 2 >> u
and k, diverges (see Supplementary Information). Hence,
whereas the total deformation in a spring chain is evenly

distributed over all elastic elements, such homogeneity
breaks down for mechanisms, precisely because of the
counter-rotations. The response of flexible, mechanism-
based metamaterials hybridises pure mechanism-like and
homogeneous elastic deformations, leading to a crossover
from a mechanism-dominated, inhomogeneous regime for
small systems to a homogeneous elastic regime for larger
system sizes.

Both n* and n, reveal this crossover, but we note that
their values differ. To understand what sets these val-
ues and untangle their relation, we consider a hybrid
dressed mechanism where the hinges are subject to bend-
ing, stretching and shear, with stiffnesses Cj, k; and Cj
respectively. Stretching and shear introduce deforma-
tions that compete with the purely counter rotating mode
of the underlying mechanism. The equations that govern
mechanical equilibrium are controlled by the dimension-
less ratios (see Supplementary Information):
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which tune the relative elastic penalties of mechanism-
preserving and mechanism-distorting deformations. The
purely torsional model corresponds to the limit where
both the stretching and shear stiffnesses are much larger
than the bending stiffness, that is («, 8 — o00). We
have checked that solutions to this model for appropri-
ate values of a and B show excellent agreement with
the experimental results (see Methods and Extended
Data Figures : dressing the mechanism with elas-
tic hinge interactions is an effective approach to describe
mechanism-based metamaterials.

The competition between mechanism-preserving and
mechanism-distorting deformations controls the char-
acteristic length scale. To show this, we vary the
control parameters o and 3, and determine n* and
np. When mechanism-like deformations are energetically
cheap (large «, 8), both n* and n, diverge, whereas when
rotations are energetically expensive (small «, ), the
lengths n* and n, become small (Fig. 3a-b). Experimen-
tally, we can leverage this connection to vary and control
the length scale, as the relative costs of the mechanism-
preserving and mechanism-distorting deformations are
controlled by the hinge geometry. To demonstrate this,
we have varied the experimental hinge length ¢ to push
the stiffness ratio’s o and 8 up, and we find that in-
creasing ¢ indeed leads to an increase of both n* and n,
(Fig. 3c-d).

Strikingly, n* is independent of 5 whereas n,, depends
on both o and B, and as we will show below, also on
the boundary conditions. The variation of n* with « can
be understood from the competition between the energy
cost ~ NCyu? of purely counter rotating deformations,
and the energy cost ~ Cs/Nu? of a shear-induced gra-
dient of these rotations. Balancing these terms yields a
characteristic length n* ~ /Cs/C, ~ \/a, consistent
with our data (Fig. 3a inset). We note that exactly solv-
ing the underlying equations of the dressed mechanism
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FIG. 3. Characteristic scales: (a-b) Contour plots of n* (a)
and n, (b) vs. the shear-to-bending ratio « and the stretch
to bending ratio 8 computed for the hybrid mechanism (see
methods). (a-inset) The characteristic length n* scales as the
square root of a. (c) Stiffness vs. system size in experiments
with different filament length ¢. We fit a cubic function (con-
tinuous curves) to the data near the peak of ke, allowing us
to estimate n, to within £0.1. (d). Corresponding location
of the lengthscales n, (disks) and n* (squares) vs. filament
length ¢.

make this argument rigorous (see Supplementary Infor-
mation).

In contrast, the length scale n, depends on both
and the boundary conditions. To probe this boundary
dependence, we consider boundary conditions where we
independently control the forces F' (red) and F’ (blue)
at alternating locations at the edge of the chain, by set-
ting F’ = 3F (Fig. 4a) ; so far, we considered A = 0.
The intrinsic lengthscale n* is insensitive to the choice
of boundary conditions, but the boundary hybridisation
factor A allows to control n, over a wide range (Fig. 4b),
by tuning the magnitude of the rotational field (Fig. 4c).
To illustrate that this sensitivity to boundary conditions
is relevant for a wide class of mechanism-based meta-
materials, we consider a topological metamaterial which
exhibits one way motion amplification [2] (Fig. 4d). For
a hybrid mechanism where the hinges are dressed with
torsional and stretch interactions, the boundary condi-
tions control the hybridisation of mechanism-like and or-
dinary elastic deformations. Surprisingly, whereas in the
mechanism-limit deformations are located near the right
boundary, so that forces/displacements excited from the
left are amplified, manipulation of the boundary condi-
tions allows to tune the gain of the displacement amplifi-
cation over a giant—80dB—range (Fig. 4e) and to excite
deformations that can be localized near the left edge,
near the right edge, or near both boundaries (Fig. 4f).

a b c
< 30 v —= 10" =
- —i-0 05
S —_ = —a-0s
220 — i 3
F | R N
=) g
fd ~—1 <]
o 0 101
— U3 0 2345678910
Boundary hybridisation A Site n
d, L ¢ w L
\ \ \ . <3 ‘ »\—Z A=-15
p o E ——
F ] '> 0 o 10
— c hy
S X - @ 3
/ / ° 40 E 1074
/ / / - g 107 =
/ / ! -3 0 3 & 1234567
Boundary hybridisation A Site n

FIG. 4. Sensitivity to boundary conditions. (a) Meta-
chain with imposed forces F (violet) and F’ := 3 F (blue).
(b) Length scales vs A, illustrating that n* is an intrinsic
feature while n, can be tuned by the boundary conditions.
(¢) The amount of rotations depends strongly on the bound-
ary conditions. (d) Topological chain (See Supplementary In-
formation for the theoretical description). (e) The displace-
ment amplification gain G strongly depends on the bound-
ary condition hybridisation factor A\. The gain is defined as
G = 20log,ywn /w1, where wi (wn) is the rotation of the
most left (right) squares. (f) Rotational field w, as function
A

Hence, the introduction of finite energy distortions alle-
viates topological protection and allows boundary pro-
grammability.

A physically appealing picture appears: mechanism-
based metamaterials have an intrinsic length-scale n*
that depends on the geometric design and diverges in
the purely mechanism limit. Such length-scale quantifies
the spatial extension of a soft mode, which localizes near
inhomogeneities such as boundaries. Whether this mode
is excited depends on the boundary conditions. For the
case of the meta-chain, if we choose boundary conditions
which are compatible with the counter-rotating texture
of the underlying mechanism, i.e., A = —1, the crossover
length n, between mechanism-like and elastic behaviour
diverges, whereas strongly incompatible boundary con-
ditions lead to a rapid crossover to ordinary elastic be-
haviour.

We expect that most mechanism-based metamaterials,
including cellular metamaterials [2] [7, [9] [10] 18, 23] 24],
allosteric networks [28] [29], gear-based metamaterials [15]
and origami [4], 16, T9H22], feature similarly large char-
acteristic scales. Continuum descriptions need to encom-
pass such large scales—in contrast to Cosserat-type de-
scriptions of random cellular solids governed by the bare
cell size—as well as the compatibility between the tex-
tures of the mechanism and the boundary [18]. We stress
that proper hinge design is critical for maintaining func-
tionality in large metamaterial samples, and we suggest
to explore hierarchical designs, with multiple small sub-
blocks connected via ”meta connectors” that promote the
propagation of the required mechanism in each block,
thus ensuring that the functionality survives elastic hy-
bridization in the thermodynamic limit.
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I. METHODS
A. Experiments

We fabricate our samples by 3D printing a flexible
polyethylene/polyurethane thermoplastic mixture (Fi-
laflex by Recreus, Young’s modulus £ = 12.75 MPa,
Poisson’s ratio v ~ 0.5). The samples are 7.5 mm thick,
initially made of N = 14 rows of squares of diagonal
L = 17 mm, which are connected by ligaments of length
¢ = 1.7 mm and width w = 1.7 mm (Fig. 2ab of the main
text). We measure the stiffness of these samples by pinch-
ing the outer horizontal joints between two rods, which
are positioned such that they tightly grip the joints—this
boundary condition ensures that the rotational mode is
strongly excited. The rods are attached to an uniaxial
testing device equipped with a 100 N load cell, which
measures forces F' and displacements ¢ with 1 mN and
10 pm accuracy respectively, and with which we apply
an external displacement from § = —0.50 mm (in com-
pression) to 6 = 1.50 mm (in extension). We focus on
the linear response regime, and measure the stiffness k
in the displacement range § € [—0.25 mm, 1.25 mm)] by
using the linear coefficient of a 5" order polynomial fit
to the force-displacement F' vs. 0 curve—details of the
procedure are not crucial, as the data is very close to
linear (See Extended Data Figure [lh). To measure the
variation of k with N, we print N = 14 samples, perform
experiments, remove a pair of squares to obtain N = 13,
perform more experiment and so on.

We have marked these elements and record images with
a high resolution CMOS camera (Basler acA2040-25gm;
resolution 4Mpx), which is triggered by the mechanical
testing device. This allows us to measure rotations 6(n)
with 1x 10! deg accuracy vs. the displacement §. In the
linear regime, #(n) is proportional to d, and we determine
the rotational rate w(n) from a linear fit of the 6(n) vs.
§ curves (See Extended Data Figure [Ip).

B. Numerical Simulations

For our static finite elements simulations, we use the
commercial software ABAQUS/STANDARD and we use
a neohookean energy density as a material model, us-
ing a shear modulus, G = 4.25MPa and bulk modu-
lus, K = 212GPa (or equivalently a Young’s modulus
E = 12.75 MPa and Poisson’s ratio v = 0.49999) in
plane strain conditions with hybrid quadratic triangular
elements (abaqus type CPE6H). We perform a mesh re-
finement study in order to ensure that the thinnest parts
of the samples where most of the stress and strain lo-
calized are meshed with at least four elements. As a
result, the metamaterial approximately has from 3 x 103
to 6 x 10* triangular elements, depending of the value of
N.

1. Simulation of the full metamaterial

We simulate the full metamaterial by applying bound-
ary conditions by pinching the most outer vertical con-
nections as in the experiments. We impose a small dis-
placement of magnitude § = 3 x 1074L to the structure
and measuring the reaction force F. Given that such
small displacement ensures the structure is probed in its
linear response, we estimate the stiffness as k = F/J.

2. Measurement of the hinge stiffnesses

We measure the individual bending, stretch and shear
stiffness by simulating two squares connected by one elas-
tic ligament and applying three sorts of boundary con-
ditions depicted in Extended Data Figure To apply
bending, stretching and shear boundary conditions, we
define constraints for every node on the vertical diago-
nal of each square and assign their displacements to the
motion of a virtual node, which is then displacement by
a small amount § = 3 x 10"*L. We then extract the re-
action forces Fj, F; and Fj, respectively on this virtual
node to calculate the stiffnesses as follows

I? F,
== 2
Cb 45 ; ( )
F.
k=2, (3)
2 F,



II. EXTENDED DATA
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Extended Data Figure 1. Experimental determination of
the stiffness and of the rotational rate. (a) Force F' vs.
displacement ¢ for a meta-chain of size N = 14 (black curve).
The stiffness k is measured from the coefficients of a 5™ order
polynomial fit (red line) to the data. (b) Rotation 6(1) of the
bottom n = 1 square vs. displacement § (black curve). The
rotational rate w(1) is determined from a linear fit to the data
(red line).
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Extended Data Figure 2. Anomalous stiffness size de-
pendence in 2D and 3D mechanical metamaterials.
(a) 2D Metamaterial based on the 2D rotating square mech-
anism (see Fig. 1) under textured boundary conditions. (b)
Stiffnesses k. and k, vs. system size N obtained by numerical
simulations. The geometric design and method of simulations
are the same as for the meta-chain shown in Fig .2. (c¢) 3D
Metamaterial [I8] under “checkerboard” textured boundary
conditions. (d) Stiffnesses k. and ko, vs. system size N ob-
tained by numerical simulations. The geometric design and
simulation method follow those described in [18], with the ex-
ception of the value of the struts width, w, which is chosen
here twice as small.

b c
Extended Data Figure 3. FEM Simulation protocol to
characterize the hinges. (a) Bending torsional stiffness Cj.
(b) Stretching stiffness kj. (c) Shear torsional stiffness Cs.

The nominal applied relative displacement has a magnitude
3x107* L.
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Extended Data Figure 4. Hybrid dressed mechanism. To
check the applicability of the hybrid model (which we derive
in detail in the Supplementary Information), we have deter-
mined the experimentally relevant values of o and (8 using
finite element simulations of the hinges, and solved the model
using these numerical values. (a) FEM determination of the
bending, stretching and shear stiffness Cp, k; and Cs. The
magnitude of the imposed displacements was 3 x 107% L,
and the color encodes the ratio of local over imposed dis-
placements (blue: 0, red 1). For the hinge parameters used
here ({/L = w/L = 0.1), we find C, = 1.62 x 10" N.mm,
k; = 3.14 x 10 N/mm, Cs = 1.82 x 10" N.mm, leading to
a = 3.38 x 10! and 8 = 1.39 x 10%. (b-c) Corresponding
stiffnesses k, and k. and rotational rates w are in excellent
agreement with our experimental data. In particular, we find
that the length scales n* = 2.35 and n, = 6.9 are in good
agreement with the experimentally measured ones (displayed
in Fig. 2 of the main text).



SUPPLEMENTARY INFORMATION
Appendix A: Mathematical description of the meta-chain

The meta-chain described in the main text is based on the rotating squares mechanism [I] and can be modelled
with different degrees of complexity. In this supplementary document, we will adopt three modelling approaches.
In all three of them, the squares are assumed infinitely rigid and are connected by flexible connections. In the first
section, we assume that these connections can only bend, and in the second and third, we assume that they can also
stretch and shear.

1. Purely Rotating Square mechanism model

We first describe the mechanical response of the mechanism depicted in Fig. [5] made of a periodic array of squares
connected by their tips [I] and actuated by a force F at the outer most hinges.

a. Kinematics and geometrical constraints

The rotating squares mechanism allows only one mode of deformation, and the displacements of the central nodes
u, (Fig. ) are related to the rotation of the squares as

L
Upt1 —Upy = 7 (cos(%ﬂ?n) + cos(gfﬂnﬂ)) . (A1)

As a result, the internal rotations and the end-to-end displacement can be expressed as follows

N-1
L
UN—U] = 7 Z (cos(%—i—@n) + cos(%—@nﬂ)). (A2)
n=1

In addition, the rotation of subsequent squares are opposite (Fig) and equal to ,, = (—1)"Q. Therefore the above

equation can be expressed as

B { N=L/2L(cos(2+9) + cos(5—9Q)) if N is odd
UN—Up =

4 4 A3
N=2/2L(cos(Z+€) + cos(5—)) + V2L cos(E—Q) if N is even (43)

b. Energetics and stiffness of the mechanism dressed with torsional springs

Assuming that the bending of each hinge is penalised by an elastic energy, given by a torsional stiffness Cy, we can
write

N-1 o, N C
_ ~o _ 2 ~o 2
EanE1 ( 5 (0 —0p41) > +n¥1 5 (26,,)°, (A4)

In addition, since the rotation of subsequent squares are opposite (Fig), the elastic energy can be simply written
as follows

E =2(3N —2)C, Q% (A5)

Finally, in order to derive the stiffness, we assume that 2 < 1 and linearise Eq.

5= 0(92) if N is odd (A6)
| LQ  if Niseven ’
where § = uy—u; — (N — 1)L. This equation, combined with the identity F = %k(SQ, yields
0 if N is odd (A7)
| 4(3N — 2)% if N is even
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Extended Data Figure 5. ab. The undeformed (a) and deformed (b) configurations of a rotating squares mechanism of length
N. (c) A close-up of two neighbouring squares, showing the variables 6, and 0,41 = —0,.

2. Hybrid mechanism model for the meta-chain

a. Kinematics and geometrical constraints

In this model, we employ elastic hinges of length ¢ (Fig. @a—c), with energy penalties associated to bending, stretch
and shear (Fig. —c). As the top and bottom rows behave symmetrically, we can describe the kinematics of the
system by solely considering the top row (Fig. |fp) We describe the state of the system with the following variables:
0, is the rotation of square n compared to its starting configuration, 1, is the angle that joint n makes with the
z-axis and &, is the strain induced on joint n (See Fig. @:) We can express geometrically the distance between two
subsequent bottom vertices of the squares i, #,41 as a function of the variables 0,,, ¥, €,:

u _ L |cos("/a+6y) + cos(/a—0Opn 1) cos(¥y,)
Uit~ = 5 sin(w/4+9n)—sin(w/4—9n++1)] +{(14en) {sin(z/)n)} (A8)
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Extended Data Figure 6. ab. The undeformed (a) and undeformed (b) configurations of a system of length N, showing the
parameters L and £. Our model comes in two flavours, where (i) the additional force F’ is zero and where (ii) F” is finite. (b) A
close-up of two neighbouring squares, showing the variables 6,,, 1., €,. The dotted line is the z-axis of the coordinate system.

By symmetry, the square bottom vertices lie on the z-axis of the coordinate system. This condition translates into
the constraints ¢;(n) = 0, for n € [1, N—1] and ¢; = 0 with

c1(n) = % sin(7/a+6,,) — % sin(7/a—0,41) + £(14¢,) sin(¢y,) (A9)
— /L L
Cy =UN—U] — Z <ﬁ cos(™/a+0,) + 7 cos(™/a—0p11) + L(14¢,) cos(z/Jn)>. (A10)

The first constraint ensures that all points ,, lie on the x-axis, the second constraint connects the end-to-end distance
of the system to the internal variables.

b. Energetics and governing equations of the elastically dressed mechanism

This structure has multiple degrees of freedom, which when actuated, cost elastic energy. We assume that (a)
the pure bending of each connection is governed by the torsional stiffness C}, (Fig. ); (b) the stretching of each
connections is governed by the linear stiffness k; (Fig. ); (c) the pure shear of each connection is governed by the
torsional stiffness C; (Fig. ) One should not be surprised by the fact that C, and Cy are a priori different. In a
fully elastic structure (See e.g. Extended Data Figs. 3,4 of the main text), the hinge bending and shear are associated
to the same type of local deformations, yet are localised at different places within the filament that acts as a hinge.
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Extended Data Figure 7. The three deformation modes of the hybrid mechanism. (a) Pure bending, where 6, — 6,41 # 0,

Yn = (0n 4+ 0n41)/2 and €, = 0. (b) Pure stretch, where €, # 0, 6, = 0,41 and ¥, = (6 + 0n41)/2. (c) Pure shear, where
1/)n 75 (Gn —+ 9n+1)/27 Qn = 9n+1 and En = O

Combining these stiffnesses to the kinematics expressed above, we can then express the elastic energy of the system
as follows:

2 2

[\V]

N-1 2 N

where the first sum corresponds to the energy of the two rows of horizontal connections, which can both bend, stretch
and shear and the second sum to the vertical connections, which by symmetry only experience bending.

c. Equations governing the mechanical equilibrium

The elastic energy expressed in Eq. (All) has to be minimized in the presence of the geometrical constraints
c1(n) =0 and ¢3 = 0. To do this, we introduce the Lagrange function:

L=F— ZGcl — Fey. (A12)

Here G,,, F' are the Lagrange multipliers, where F' corresponds to the force applied in the z-direction. Mechanical
equilibria are found at stationary points of the Lagrange function, which are given when the partial derivatives of
the Lagrange function with respect to the variables 0,,, ¥, €,, G, F are zero. Since we focus on solutions for small
displacements, the equations found are subsequently linearised with respect to these variables. After a few algebraical
manipulations and substitutions, we can express the governing equations solely with respect to the angle 6,, and the
force F':

Cy L\? L
= — A13
1C, <1+€> (01+02) = (62—361) + 4CbF ( a)
C, L\’
4Cb 1+ (9n71+29n+6n+1) = (9n71_49n+9n+1) for n € [27 N_l] (Algb)
C, L\? L
1 _ — = - —F, Al3c
10, ( + g) (ON-1+0N) = (On-1-30N) 1, ( )
and
(N —1)F = —2k;0 + Lk;j(0n—61), (A14)
where § = uy—u; — (N — 1)(L+¢) is the structure’s compressive displacement, i.e. is negative (positive) under
compression (tension). Note that the stretch e, = —F/2k;{ is independent of the discrete coordinate n. After a
non-dimensionalization step, we find the equations
a(Bo+61) = (01—300) + F (Alba)
(971 1+26, +9n+1) (Gn 1—46, +9n+1) for n € [2,N—1] (A15b)
(9]\[ 1+9N) (9]\7 1—391\[) F (A15C)
(N —1)8'F = (Ox—0) — 6. (A15d)



11

Here the non-dimensional parameters a = 4%1 (1+ %)2 and g = Iifc%: represent the relative cost of shear and stretch
to bending, respectively, and are the egs. (1) of the main text. In addition, the non-dimensionalised force and
displacement read respectively F=F ﬁ and & = %.

This system of equations is linear and can possibly be solved analytically for each value of N. However, the
expressions differ for every value of N and become impractically large for large N. Therefore, we solved the equations
numerically for each value of N, o and 8 in order to calculate the stiffness and rotational field (Fig. 3 of the main
text and Extended Data Figure 4). The peak length scale n, is determined by using the location of the maximum
of a quadratic fit to the numerically estimated stiffness k. vs. N in the vicinity of the maximum value of k.. The
characteristic length scale n* is determined by using the decay length of an exponential fit to the rotational field of a
meta-chain of length N = 1000.

d. Continuum limit of the bulk equation

In order to obtain an explicit mathematical expression for the characteristic length n*, it is worthwhile to consider
Eq. (A15b) in the continuum limit. Assuming that the envelope of the counter-rotating field has small gradients, we can

perform a Taylor expansion of the discrete staggered field around z = n, 6, = (), 0,41 = —0(z) — b, (x) — %ém (x)

and 0,1 = —0(x)+bl, () — %ém(x), where b = L+/ is the distance between two squares. Eqs. (A15b|) then becomes

2 ~ ~
%(a —1)pe — G =0. (A16)

As a result, the family of solutions for this continuum staggered field 6 is {expz/(bn*), exp —z/(bn*)}, where n* =

%(a — 1), whose scaling in the large « limit is consistent with the numerical solution of Eqs. (A15a4A15d) discussed

in the main text. This continuum approach establishes a clear link between the intrinsic lengthscale n* and the decay
length that appears in the presence of boundaries or inhomogeneities.

3. Hybrid mechanism model for the meta-chain with complex boundary conditions

In this section we probe the mechanical response of the meta-chain by applying a load F’ at additional most upper
and lower vertices of the edge squares (See Fig. @3) As a result, the end-to-end vertices undergo a relative horizontal
displacement ¢’. This additional loading condition translates as an additional constraint, written as follows

N-1
c3 = uy—uj — nz::l (% cos(7/a+6,) + % cos(T/a—0p11) + (1+¢€,,) cos(wn)> — Lsin(61) — Lsin(0y). (A17)

This additional constraint leads to

a(014605) = (62—36,) + (F — 2F") (A18a)
a(9n,1+29n—|—9n+1) = (9n71_49n+9n+1) for n € [2, N—l] (A18b)
a(GN,l—i—HN) = (91\{,1—391\[) — (F - QFN’/), (A].SC)
and
(N —=1)B7Y(F +2F") = (On—61) — 0, (A19)
(N =1 Y E +2F") = —(On—0,) — &, (A20)

where 2F" corresponds to the total force applied at the outer—top and bottom—vertices of the chain. Note that the
stretch €, = —(F + 2F")/2k;{ is independent of the discrete coordinate n. We calculate the effective stiffness of the
structure as follows

k==+2—. (A21)

PP
5
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Cx

Extended Data Figure 8. Sketch of the mechanical metamaterial 2. a. Geometry of the chain constituted of N unit cells,
characterized by their initial tilt angle § and connected in the middle by a torsional spring C' (red dots). bc. Geometry of two
unit cells in undeformed (b) and deformed (c) configurations. For simplificity, in the text we work the condition a = 1, without
loss of generality. Adapted from [2)].

Appendix B: Mathematical description of the topological metamaterial

In Figure 5 of the main text, we introduce a topological mechanical metamaterial (See Fig. ) which was previously
studied by Coulais et al. [2]. By contrast with the previous study where only the pure mechanism was considered
under simple boundary conditions, we here focus on the mechanical response of the mechanism-based metamaterial
by taking into account the elastic hinge deformations which compete with the mechanism and by using more generic
boundary conditions. The system Lagrangian reads

1 N ) 1 N ) 1 N-1 )
L 250269n+§k;an+§k;5n

n=1
N-1
Kn (2\/5008(9) + V2 (an 4+ 1) (—sin (0 + 6¢)) + (ny1 + 1) sin (0 + 6ppir)
+ n=1
— (ennt1 + 1) cos (0 — 0¢p pt1)) — sin (—9 — 00, + %) —sin (9 + 00,11 + g))
= : (B1)
>~ An (V2 ((@n + 1) (= 005 (04 660)) + (@1 + 1) c08 (0 + 3641)
+ n=1
+ (enm+1 + 1) sin (0 — 6¢y, 1)) — cos (—9 —00,, + %) -+ cos (9 + 00,41 + %))

N
+ Z tn (—2cos(8) + (an, + 1) cos (6 + d¢py,) + cos (6 + 66,))
n=1

+V2F ((ay + 1) sin (8¢, + ) — sin (6, + 6)) + 2V2F' (g + 1) sin (¢, + 6)

where the quantities 66;, o, €;i+1 and 0v; ;41 are internal degrees of freedom of the structure. The quantities A;, p;,
ki, F' and F’ are Lagrange multipliers associated to the geometric constraints.
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Mechanical equilibria are found at the stationary points of the Lagrangian, therefore follow from the equations
0L/060; = 0, 0L/06c; = 0, and so on. After a few simple algebraic manipulations and substitutions, we find the
following equations

/
,QﬁM sin(20) = sin(@) <4i591 + (46162592 - 40%501)) (BZa)
+ (a1 — a2) (sin @ + sin(36) + 5 cos(6) + cos(30))
C
0 :4E50n — 4C102(5(0n,1 + 50n+1) + 4(0% + cg)éﬂn (BQb)
+2((cot § + 1)(c1 + c2) — Dapt1 — 2(2¢1 — 3cot @ — 2)a—1 — 4cot(0)(c1 + c2)an,
0 :4%591\7 —4e1e00n 1 + 4c200N + 4o cot(B) (an—1 — an) (B2¢)
and
F4+2F
—2\/5% cscl =2 cot 0 (—c1001 + c2062) + 2 csc? Bay — 2a cot? 0 (B3a)
0 =2cot f (c100,_1 — 2(c1 + €2)00, + c200,11) + 2(1 + 2 cot? O) v, — 2cot? O (o1 + ni1)
(B3b)
0 =2cot(0) (c160n_1 — cad0n) + 2an csc?(0) — 2an_1 cot?(6), (B3c)

with ¢ = £(sin(26) + cos(20) + 2) and c; = 3(— sin(26) + cos(20) + 2). To produce the results shown in figure 5d-f of
the main text, we solve these equations numerically for C' = 0.1, k = 10, § = 7/16 and varying the ratio between F'
and F’. The hybridisation of the left-localised and right-localised deformation modes occurs because the deformation
fields v, and 66,, are mixed.

[1] J. N. Grima and K. E. Evans, Auzetic behavior from rotating squares, J. Mater. Sc. Lett. 19, 1563-1565 (2000).
[2] C. Coulais, D. Sounas and A. Al Static non-reciprocity in mechanical metamaterials, Nature 542, 461-464 (2017).
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