3,507 research outputs found

    Orbital Solutions and Absolute Elements of the Eclipsing Binary MY Cygni

    Get PDF
    Differential UBV photoelectric photometry for the eclipsing binary MY Cyg is presented. The Wilson-Devinney program is used to simultaneously solve the three light curves together with previously published radial velocities. A comparison is made with the previous solution found with the Russell-Merrill method. We examine the long-term apsidal motion of this well-detached, slightly eccentric system. We determine absolute dimensions, discuss metallicity/Am-star issues, and estimate the evolutionary status of the stars

    A refined analysis of the low-mass eclipsing binary system T-Cyg1-12664

    Full text link
    The observational mass-radius relation of main sequence stars with masses between ~0.3 and 1.0 Msun reveals deviations between the stellar radii predicted by models and the observed radii of stars in detached binaries. We generate an accurate physical model of the low-mass eclipsing binary T-Cyg1-12664 in the Kepler mission field to measure the physical parameters of its components and to compare them with the prediction of theoretical stellar evolution models. We analyze the Kepler mission light curve of T-Cyg1-12664 to accurately measure the times and phases of the primary and secondary eclipse. In addition, we measure the rotational period of the primary component by analyzing the out-of-eclipse oscillations that are due to spots. We accurately constrain the effective temperature of the system using ground-based absolute photometry in B, V, Rc, and Ic. We also obtain and analyze V, Rc, Ic differential light curves to measure the eccentricity and the orbital inclination of the system, and a precise Teff ratio. From the joint analysis of new radial velocities and those in the literature we measure the individual masses of the stars. Finally, we use the PHOEBE code to generate a physical model of the system. T-Cyg1-12664 is a low eccentricity system, located d=360+/-22 pc away from us, with an orbital period of P=4.1287955(4) days, and an orbital inclination i=86.969+/-0.056 degrees. It is composed of two very different stars with an active G6 primary with Teff1=5560+/-160 K, M1=0.680+/-0.045 Msun, R1=0.799+/-0.017 Rsun, and a M3V secondary star with Teff2=3460+/-210 K, M2=0.376+/-0.017 Msun, and R2=0.3475+/-0.0081 Rsun. The primary star is an oversized and spotted active star, hotter than the stars in its mass range. The secondary is a cool star near the mass boundary for fully convective stars (M~0.35 Msun), whose parameters appear to be in agreement with low-mass stellar model.Comment: 18 pages, 15 figures, 15 table

    Morphological response of variable river discharge and wave forcing at a bar-built estuary

    Get PDF
    17 USC 105 interim-entered record; under review.The article of record as published may be found at https://doi.org/10.1016/j.ecss.2021.107438Observations of morphological evolution at Carmel River State Beach, Carmel, CA, USA, were made during two winter periods where the estuary underwent transitions from closed to open states episodically during each observation period. However, each winter was climatologically distinct: the first (Dec 2016–May 2017) was a high river discharge year (several events >200 m³ /s) with westerly offshore waves and the second (Dec 2017–May 2018) was a low river discharge year with northwesterly offshore waves. The morphological response of the beach was measured using Structure-from-Motion from both aircraft and unmanned aerial vehicles (UAVs) and shows two distinct seasonal trends. The first (in 2016–2017) indicates rapid (hours) and frequent (days-weeks) migration of the river breach channel across the span of the beach. The second (in 2017–2018) indicates no migration of the initial breach channel, despite multiple breach events. Analysis of the offshore wave energy using the Coastal Data Information Program (CDIP) hindcast model results indicate a stronger longshore wave radiation stress during the migratory breach year. In addition, discharge rates during this year were more than three times stronger than the non-migratory year, indicating a stronger offshore jet from the breach site. These observations support the hypothesis that migration requires both a strong river discharge and a longshore wave radiation stress component.Naval Postgraduate School Naval Research ProgramOffice of Naval Research-CRUSER Progra

    The Fate of Binaries in the Galactic Center: The Mundane and the Exotic

    Full text link
    The Galactic Center (GC) is dominated by the gravity of a super-massive black hole (SMBH), Sagittarius A∗^*, and is suspected to contain a sizable population of binary stars. Such binaries form hierarchical triples with the SMBH, undergoing Eccentric Kozai-Lidov (EKL) evolution, which can lead to high eccentricity excitations for the binary companions' mutual orbit. This effect can lead to stellar collisions or Roche-lobe crossings, as well as orbital shrinking due to tidal dissipation. In this work we investigate the dynamical and stellar evolution of such binary systems, especially with regards to the binaries' post-main-sequence evolution. We find that the majority of binaries (~75%) is eventually separated into single stars, while the remaining binaries (~25%) undergo phases of common-envelope evolution and/or stellar mergers. These objects can produce a number of different exotic outcomes, including rejuvenated stars, G2-like infrared-excess objects, stripped giant stars, Type Ia supernovae (SNe), cataclysmic variables (CVs), symbiotic binaries (SBs), or compact object binaries. We estimate that, within a sphere of 250 Mpc radius, about 7.5 to 15 Type Ia SNe per year should occur in galactic nuclei due to this mechanism, potentially detectable by ZTF and ASAS-SN. Likewise we estimate that, within a sphere of 1 Gpc3^3 volume, about 10 to 20 compact object binaries form per year that could become gravitational wave sources. Based on results of EKL-driven compact object binary mergers in galactic nuclei by Hoang at al. (2018), this compact object binary formation rate translates to about 15 to 30 events per year detectable by Advanced LIGO.Comment: 8 pages, 3 figures, accepted by Ap

    Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning

    Get PDF
    The observation of gravitational waves from compact binary coalescences by LIGO and Virgo has begun a new era in astronomy. A critical challenge in making detections is determining whether loud transient features in the data are caused by gravitational waves or by instrumental or environmental sources. The citizen-science project \emph{Gravity Spy} has been demonstrated as an efficient infrastructure for classifying known types of noise transients (glitches) through a combination of data analysis performed by both citizen volunteers and machine learning. We present the next iteration of this project, using similarity indices to empower citizen scientists to create large data sets of unknown transients, which can then be used to facilitate supervised machine-learning characterization. This new evolution aims to alleviate a persistent challenge that plagues both citizen-science and instrumental detector work: the ability to build large samples of relatively rare events. Using two families of transient noise that appeared unexpectedly during LIGO's second observing run (O2), we demonstrate the impact that the similarity indices could have had on finding these new glitch types in the Gravity Spy program

    False positive probabilties for all Kepler Objects of Interest: 1284 newly validated planets and 428 likely false positives

    Get PDF
    We present astrophysical false positive probability calculations for every Kepler Object of Interest (KOI)---the first large-scale demonstration of a fully automated transiting planet validation procedure. Out of 7056 KOIs, we determine that 1935 have probabilities <1% to be astrophysical false positives, and thus may be considered validated planets. 1284 of these have not yet been validated or confirmed by other methods. In addition, we identify 428 KOIs likely to be false positives that have not yet been identified as such, though some of these may be a result of unidentified transit timing variations. A side product of these calculations is full stellar property posterior samplings for every host star, modeled as single, binary, and triple systems. These calculations use 'vespa', a publicly available Python package able to be easily applied to any transiting exoplanet candidate.Comment: 20 pages, 8 figures. Published in ApJ. Instructions to reproduce results can be found at https://github.com/timothydmorton/koi-fp

    Determination of Uncertainties for Analytically Derived Material Properties to Be Used in Monte Carlo Based Orion Heatshield Sizing

    Get PDF
    Ablative materials are often used for spacecraft heatshields to protect underlying structures from the extreme environments associated with atmospheric reentry. NASA's Orion EM-1 capsule has been designed to use a molded Avcoat material system. In order to determine the required heatshield thickness, a Monte Carlo approach to the sizing process was proposed. To perform the Monte Carlo simulation, statistical uncertainties on all material property input parameters were required. Obtaining these values for measured properties is straightforward, however input parameters that are derived analytically have historically used uncertainties based on engineering judgment. A MATLAB program was created to use laboratory generated thermogravimetric analysis (TGA) data to calculate uncertainties on the Arrhenius parameters for molded Avcoat. Uncertainties associated with the normalized ablation rate and pyrolysis gas enthalpy were also generated using a wrapper script and the ACE code. These uncertainties could then be tied directly to measured values of individual elemental constituents. The resulting uncertainty values will allow for a probabilistic sizing approach on molded Avcoat with a higher level of confidence in the input parameters

    KIC 4247791: A SB4 system with two eclipsing binaries (2EBs)

    Full text link
    KIC 4247791 is an eclipsing binary observed by the Kepler satellite mission. We wish to determine the nature of its components and in particular the origin of a shallow dip in its Kepler light curve that previous investigations have been unable to explain in a unique way. We analyze newly obtained high-resolution spectra of the star using synthetic spectra based on atmosphere models, derive the radial velocities of the stellar components from cross-correlation with a synthetic template, and calculate the orbital solution. We use the JKTEBOP program to model the Kepler light curve of KIC 4247791. We find KIC 4247791 to be a SB4 star. The radial velocity variations of its four components can be explained by two separate eclipsing binaries. In contradiction to previous photometric findings, we show that the observed composite spectrum as well as the derived masses of all four of its components correspond to spectral type F. The observed small dip in the light curve is not caused by a transit-like phenomenon but by the eclipses of the second binary system. We find evidence that KIC 4247791 might belong to the very rare hierarchical SB4 systems with two eclipsing binaries.Comment: 6 pages, 8 figures, 2 table
    • …
    corecore