3,490 research outputs found

    A refined analysis of the low-mass eclipsing binary system T-Cyg1-12664

    Full text link
    The observational mass-radius relation of main sequence stars with masses between ~0.3 and 1.0 Msun reveals deviations between the stellar radii predicted by models and the observed radii of stars in detached binaries. We generate an accurate physical model of the low-mass eclipsing binary T-Cyg1-12664 in the Kepler mission field to measure the physical parameters of its components and to compare them with the prediction of theoretical stellar evolution models. We analyze the Kepler mission light curve of T-Cyg1-12664 to accurately measure the times and phases of the primary and secondary eclipse. In addition, we measure the rotational period of the primary component by analyzing the out-of-eclipse oscillations that are due to spots. We accurately constrain the effective temperature of the system using ground-based absolute photometry in B, V, Rc, and Ic. We also obtain and analyze V, Rc, Ic differential light curves to measure the eccentricity and the orbital inclination of the system, and a precise Teff ratio. From the joint analysis of new radial velocities and those in the literature we measure the individual masses of the stars. Finally, we use the PHOEBE code to generate a physical model of the system. T-Cyg1-12664 is a low eccentricity system, located d=360+/-22 pc away from us, with an orbital period of P=4.1287955(4) days, and an orbital inclination i=86.969+/-0.056 degrees. It is composed of two very different stars with an active G6 primary with Teff1=5560+/-160 K, M1=0.680+/-0.045 Msun, R1=0.799+/-0.017 Rsun, and a M3V secondary star with Teff2=3460+/-210 K, M2=0.376+/-0.017 Msun, and R2=0.3475+/-0.0081 Rsun. The primary star is an oversized and spotted active star, hotter than the stars in its mass range. The secondary is a cool star near the mass boundary for fully convective stars (M~0.35 Msun), whose parameters appear to be in agreement with low-mass stellar model.Comment: 18 pages, 15 figures, 15 table

    The persistence of pancakes and the revival of self-gravity in tidal disruption events

    Get PDF
    The destruction of a star by the tides of a supermassive black hole (SMBH) powers a bright accretion flare, and the theoretical modeling of such tidal disruption events (TDEs) can provide a direct means of inferring SMBH properties from observations. Previously it has been shown that TDEs with β=rt/rp=1\beta = r_{\rm t}/r_{\rm p} = 1, where rtr_{\rm t} is the tidal disruption radius and rpr_{\rm p} is the pericenter distance of the star, form an in-plane caustic, or ``pancake,'' where the tidally disrupted debris is compressed into a one-dimensional line within the orbital plane of the star. Here we show that this result applies generally to all TDEs for which the star is fully disrupted, i.e., that satisfy β≳1\beta \gtrsim 1. We show that the location of this caustic is always outside of the tidal disruption radius of the star and the compression of the gas near the caustic is at most mildly supersonic, which results in an adiabatic increase in the gas density above the tidal density of the black hole. As such, this in-plane pancake revitalizes the influence of self-gravity even for large β\beta, in agreement with recent simulations. This finding suggests that for all TDEs in which the star is fully disrupted, self-gravity is revived post-pericenter, keeps the stream of debris narrowly confined in its transverse directions, and renders the debris prone to gravitational instability.Comment: ApJL Accepte

    Fallback Rates from Partial Tidal Disruption Events

    Get PDF
    A tidal disruption event (TDE) occurs when a star plunges through a supermassive black hole's tidal radius, at which point the star's self-gravity is overwhelmed by the tidal gravity of the black hole. In a partial TDE, where the star does not reach the full disruption radius, only a fraction of the star's mass is tidally stripped while the rest remains intact in the form of a surviving core. Analytical arguments have recently suggested that the temporal scaling of the fallback rate of debris to the black hole asymptotes to t−9/4t^{-9/4} for partial disruptions, effectively independently of the mass of the intact core. We present hydrodynamical simulations that verify the existence of this predicted, t−9/4t^{-9/4} scaling. We also define a break timescale -- the time at which the fallback rate transitions from a t−5/3t^{-5/3} scaling to the characteristic t−9/4t^{-9/4} scaling -- and measure this break timescale as a function of the impact parameter and the surviving core mass. These results deepen our understanding of the properties and breadth of possible fallback curves expected from TDEs and will therefore facilitate more accurate interpretation of data from wide-field surveys.Comment: Accepted for publication in The Astrophysical Journal, 13th June 2020. 11 pages, 8 figure

    Nonthermal filaments from the tidal destruction of clouds in the Galactic center

    Get PDF
    Synchrotron-emitting, nonthermal filaments (NTFs) have been observed near the Galactic center for nearly four decades, yet their physical origin remains unclear. Here we investigate the possibility that NTFs are produced by the destruction of molecular clouds by the gravitational potential of the Galactic center. We show that this model predicts the formation of a filamentary structure with length on the order of tens to hundreds of pc, a highly ordered magnetic field along the axis of the filament, and conditions conducive to magnetic reconnection that result in particle acceleration. This model therefore yields the observed magnetic properties of NTFs and a population of relativistic electrons, without the need to appeal to a dipolar, ∼\sim mG, Galactic magnetic field. As the clouds can be both completely or partially disrupted, this model provides a means of establishing the connection between filamentary structures and molecular clouds that is observed in some, but not all, cases.Comment: Figure added, includes referee suggestion

    Instability of streamwise vortices in plane channel flows

    Get PDF
    We present analysis and numerical experiments on the instability of streamwise vortices in 'minimal channel' flows and argue that this instability is a key feature in the observed intermittent cycle of formation, break-up, and re-formation of these structures. The base flow is a three-component, two-dimensional pair of counter-rotating rolls with axes aligned along the direction of the mean shear. While it is not a steady solution to the Navier-Stokes equations, we show numerically that this flow is unstable on a fast time scale to a secondary, three-dimensional Floquet mode. The growth of the secondary instability does not saturate in a new equilibrium, but continues until highly unstable local shear layers form and the entire flow breaks down into turbulence. Our analysis is motivated in part by the strong similarities between the intermittent turbulent cycle in minimal channel flows and one studied, both experimentally and in computations, in Couette-Taylor flow

    Effect of supervised exercise on physical function and balance in patients with intermittent claudication

    Get PDF
    Background The aim of the study was to identify whether a standard supervised exercise programme (SEP) for patients with intermittent claudication improved specific measures of functional performance including balance. Methods A prospective observational study was performed at a single tertiary vascular centre. Patients with symptomatic intermittent claudication (Rutherford grades 1–3) were recruited to the study. Participants were assessed at baseline (before SEP) and 3, 6 and 12 months afterwards for markers of lower-limb ischaemia (treadmill walking distance and ankle : brachial pressure index), physical function (6-min walk, Timed Up and Go test, and Short Physical Performance Battery (SPPB) score), balance impairment using computerized dynamic posturography with the Sensory Organization Test (SOT), and quality of life (VascuQoL and Short Form 36). Results Fifty-one participants underwent SEP, which significantly improved initial treadmill walking distance (P = 0·001). Enrolment in a SEP also resulted in improvements in physical function as determined by 6-min maximum walking distance (P = 0·006), SPPB score (P < 0·001), and some domains of both generic (bodily pain, P = 0·025) and disease-specific (social domain, P = 0·039) quality of life. Significant improvements were also noted in balance, as determined by the SOT (P < 0·001). Conclusion Supervised exercise improves both physical function and balance impairment

    Variability in Short Gamma-ray Bursts: Gravitationally Unstable Tidal Tails

    Get PDF
    Short gamma-ray bursts are thought to result from the mergers of two neutron stars or a neutron star and stellar mass black hole. The final stages of the merger are generally accompanied by the production of one or more tidal "tails" of ejecta, which fall back onto the remnant-disc system at late times. Using the results of a linear stability analysis, we show that if the material comprising these tails is modeled as adiabatic and the effective adiabatic index satisfies γ≥5/3\gamma \ge 5/3, then the tails are gravitationally unstable and collapse to form small-scale knots. We analytically estimate the properties of these knots, including their spacing along the tidal tail and the total number produced, and their effect on the mass return rate to the merger remnant. We perform hydrodynamical simulations of the disruption of a polytropic (with the polytropic and adiabatic indices γ\gamma equal), γ=2\gamma =2 neutron star by a black hole, and find agreement between the predictions of the linear stability analysis and the distribution of knots that collapse out of the instability. The return of these knots to the black hole induces variability in the fallback rate, which can manifest as variability in the lightcurve of the GRB and -- depending on how rapidly the instability operates -- the prompt emission. The late-time variability induced by the return of these knots is also consistent with the extended emission observed in some GRBs.Comment: Small corrections, additional references included to reflect ApJL published versio
    • …
    corecore