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ABSTRACT

Short gamma-ray bursts are thought to result from the mergers of two neutron stars or a neutron
star and stellar mass black hole. The final stages of the merger are generally accompanied by the

production of one or more tidal “tails” of ejecta, which fall back onto the remnant-disc system at

late times. Using the results of a linear stability analysis, we show that if the material comprising

these tails is modeled as adiabatic and the effective adiabatic index satisfies γ ≥ 5/3, then the tails are

gravitationally unstable and collapse to form small-scale knots. We analytically estimate the properties
of these knots, including their spacing along the tidal tail and the total number produced, and their

effect on the mass return rate to the merger remnant. We perform hydrodynamical simulations of

the disruption of a polytropic (with the polytropic and adiabatic indices γ equal), γ = 2 neutron

star by a black hole, and find agreement between the predictions of the linear stability analysis and
the distribution of knots that collapse out of the instability. The return of these knots to the black

hole induces variability in the fallback rate, which can manifest as variability in the lightcurve of the

GRB and – depending on how rapidly the instability operates – the prompt emission. The late-time

variability induced by the return of these knots is also consistent with the extended emission observed

in some GRBs.

Keywords: gamma-ray bursts — hydrodynamics — methods: analytical — methods: numerical

1. INTRODUCTION

Timing, energetics, and host galaxy (both the spe-

cific environments and lack of apparent proximity) con-

straints have suggested that short gamma-ray bursts

(GRBs) originate from the merger of compact objects
(e.g., Paczynski 1986; Eichler et al. 1989; Burrows et al.

2005; Zhang 2007; Berger 2014; Fong et al. 2015). This

theoretical notion was recently vindicated with the con-

temporaneous gravitational wave and gamma-ray ob-
servations of the event GW/GRB170817 (Abbott et al.

2017). Multiwavelength follow-up of this event also

confirmed that such mergers produce a kilonova – the

radioactively powered emission from r -process nucle-

osynthesis in the aftermath of the coalescence (e.g.,

eric.r.coughlin@gmail.com

Li & Paczyński 1998; Metzger et al. 2010; Kasen et al.

2017).

The emission from GRBs shows variability across

a range of timescales (e.g., Margutti et al. 2011;
Dichiara et al. 2013; Berger 2014; Swenson & Roming

2014; Mu et al. 2018). The origin of this variabil-

ity could be related to an intrinsic restructuring of

the accretion disc surrounding the post-merger object
(Perna et al. 2006; Dall’Osso et al. 2017). Another pos-

sibility, however, is related to the fallback of material

onto the post-merger system that occurs as the tidal

tails of debris – ejected during the final stages of the

inspiral – rain back onto the disc. In particular, while
it is predicted that the overall scaling of this fallback

should trace a smooth, ∝ t−5/3 decline in time (e.g.,

Chevalier 1989; see also the fallback rate in Figure 3

below), small scale structure in the debris that feeds the
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accretion flow could correspondingly lead to changes in

the luminosity of the system.

Such structure could be supplied by the intrinsic na-

ture of the object(s) destroyed in the merger; for exam-
ple, convection in the interior of a neutron star (e.g.,

Thompson & Duncan 1993), which may be enhanced

during the inspiral, will naturally provide local density

fluctuations in the tails of the debris. It is also conceiv-

able that the dynamical state of the ejected material is
susceptible to a larger-scale instability, leading to the

formation of knots within the tails that then return

at discrete times. Rosswog (2007) speculated about

this latter possibility, and Lee & Ramirez-Ruiz (2007)
found from their numerical simulations that such an in-

stability could indeed occur (see also Colpi & Rasio

1994; Rasio & Shapiro 1994; Lee 2000). However,

Lee & Ramirez-Ruiz (2007) only found that the tails

were unstable if the polytropic index of the gas com-
prising the tails satisfied γ & 3, whereas more real-

istic equations of state likely yield γ ∼ 2 − 3 (e.g.,

Rasio & Shapiro 1994; Lattimer & Prakash 2001).

Here we use a combination of analytical arguments
and numerical experiments to demonstrate that the tails

generated from compact object mergers are gravitation-

ally unstable – and collapse to form small scale knots

that lead to variability in the fallback rate – provided

that the adiabatic index of the gas comprising the tails
satisfies γ ≥ 5/3. In Section 2 we provide analytic esti-

mates of the linear growth rate of the instability and the

properties of the knots that condense out of the tail, and

in Section 3 we compare these predictions to numerical
hydrodynamical simulations. We discuss the observa-

tional implications of these findings in Section 4. We

summarize and conclude in Section 5.

2. STABILITY ANALYSIS AND ANALYTIC

ESTIMATES

Polytropic, hydrostatic cylinders are gravitationally

unstable to perturbations along the axis of the cylin-
der below a critical wavenumber, kcrit, where kcrit ∼
few is measured in units of the radius of the cylinder

(Coughlin & Nixon 2020). By polytropic we mean that

the adiabatic index of the gas, which controls how vigor-

ously pressure perturbations respond to density pertur-
bations, and the polytropic index, being the exponent

γ that appears in the relation p ∝ ργ , where p is the

pressure and ρ is the density that appear in the equa-

tion of hydrostatic balance, are equal. All perturbations
with wavenumbers below kcrit are unstable and grow as

eστ , where σ is the growth rate that depends on the

wavenumber and τ is time in units of the sound crossing

time over the radius of the cylinder, and cause runaway

collapse along the cylinder axis. However, there is a

second wavenumber kmax ∼ 1 (< kcrit) at which the

growth rate of the instability is maximized at a value

of σmax ∼ 1 (Figure 4 of Coughlin & Nixon 2020). If a
hydrostatic cylinder is subjected to a random initial per-

turbation, such that the Fourier coefficients have com-

parable power over the range of unstable wavenumbers,

then this wavelength will grow fastest and will charac-

terize the mass and separation scales of the objects that
condense out of the instability.

The formation of a cylindrical filament is a natural

consequence of the tidal stretching of the debris that

is flung out during the final stages of the merger of two
compact objects (e.g., Figure 2). The difference between

such a tidal tail and a hydrostatic cylinder is that the

former possesses a non-negligible amount of shear in the

velocity along the axis of the cylinder, which is estab-

lished by the tidal field of the disrupting object and
inhibits the growth of the instability. In the next sub-

section we analyze the general behavior of the instability

in the presence of shear. In Section 2.2 we limit the anal-

ysis to a polytropic index of γ = 2 and we present the
observational implications of the instability.

2.1. General stability analysis

The tail expands predominantly in one direction as

a consequence of the tidal stretching, which we define

as the z-direction and delimits the axis of the cylinder,
and we define s as the cylindrical-radial direction and ϕ

as the azimuthal angle around the axis of the cylinder.

Along z there is a location Z(t) where the material is

marginally bound to the remnant, and the fluid element
at this location therefore obeys

∂Z

∂t
≡ VZ =

√

2GM•

Z
, (1)

where M• is the mass of the remnant. Near this

marginally bound position we can Taylor expand the

fluid variables in the quantity

z − Z(t)

Z(t)
≡ ∆z

Z(t)
, (2)

and the leading-order (in ∆z/Z) solution to the

fluid equations for the z-component of the velocity is
(Coughlin et al. 2016a)

vz = VZ

(

1 + 2
∆z

Z

)

. (3)

If we now assume that the gas is isentropic and we let

the adiabatic index satisfy γ ≥ 5/3, then we can show
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that the leading-order solutions to the fluid equations

for the other fluid variables are

ρ =
Λ(Z)

4πH(Z)2
g(ξ), p =

GΛ2

4πH2
h(ξ), vs = VHξ, (4)

where ρ is the gas density, p is the pressure, vs is the
cylindrical-radial velocity, H(Z) is the radius of the

cylinder where the density equals zero, VH = ∂H/∂t

is the surface velocity that satisfies

VH =
2 − γ

γ − 1
VZ

H

Z
(5)

and hence H ∝ Z(2−γ)/(γ−1), ξ = s/H , and

Λ ∝
∫ H

0

ρ s ds ∝ Z−2 (6)

is the line mass of the cylinder. With these definitions

and the isentropic relation between the pressure and the
density, so that h = Kgγ with K the entropy, we can

show that the cylindrical component of the momentum

equation and the Poisson equation can be combined to

give

Kγ

γ − 1

∂

∂ξ

[

(

1

ξ

∂λ

∂ξ

)γ−1
]

= −λ

ξ
, (7)

where λ =
∫ ξ

0 g(ξ) ξ dξ is the dimensionless line mass

and λ(1) = 1. Equation (7) is the Lane-Emden equa-
tion for the line mass of the cylinder as a function of

cylindrical radius, and can be integrated and solved for

K as described in Coughlin & Nixon (2020) (see their

Figure 1).

The solutions given by Equation (4) are quasi-
hydrostatic in that the fluid velocity is non-zero in

the cylindrical-radial direction but the sound speed cs
declines less rapidly than VH; specifically, we have

cs ≃
√
GΛ ∝ Z−1, (8)

while the velocity at the surface of the tail obeys

VH ∝ Z
2−γ
γ−1

−
3

2 . (9)

Thus, as time advances and the tail continues to stretch,

the propagation speed of perturbations within the tail is

given by the sound speed and the relevant, dimensionless

timescale that characterizes the evolution of any pertur-

bation is

dτ ≃ cs
H

dt ≡
√
GΛ

H
dt. (10)

With this dimensionless timescale, we can now intro-

duce perturbations to the density, pressure, and grav-

itational potential that are functions of ξ = s/H ,

η = ∆z/H , ϕ, and τ and derive the linearized per-
turbation equations from the fluid equations. When

γ > 5/3, the resulting set of equations is identical to

that derived in Coughlin & Nixon (2020) because of the

quasi-hydrostatic nature of the unperturbed solutions,

and there is correspondingly a maximally growing and
unstable mode that will characterize the properties of

the knots that collapse out of the ejected tail(s). When

γ = 5/3, the analysis and the linearized perturbation

equations are more complicated owing to the identical
scaling between the sound speed and the expansion rate

of the surface, and there is an additional parameter – be-

ing the ratio of the sound speed to the expansion speed,

which can be rewritten as the ratio of the tail density to

the black hole tidal density1 – that enters into the equa-
tions. When the tail density is much larger than the

black hole density, then the equations reduce to those

derived in Coughlin & Nixon (2020) and the instability

grows as a power-law in time with the power-law index
appropriate to Figure 4 in that paper. However, when

the ejecta and black hole densities are comparable, the

unstable eigenvalue must be derived as a function of the

ratio of those densities.

Here we focus on the case when γ > 5/3, as this
has been the focus of past investigations of neutron star

mergers, is likely appropriate for the very stiff equations

of state that characterize nuclear densities (valid for the

initial expansion of the tidal tail; see Section A.3 be-
low), and correspondingly the results directly carry over

from Coughlin & Nixon (2020) with an appropriate re-

definition of the dimensionless variables. Specifically,

Equation (10) combined with the scalings for the line

mass of the stream and the stream width gives

τ =

√
GΛ0

H0

Z
3/2
0√

2GM•

1
3
2 − 1

γ−1

×
(

(

Z

Z0

)
3

2
−

1

γ−1

− 1

)

,

(11)

where Λ0, H0, and Z0 are the initial line mass, stream

radius, and location of the marginally-bound orbit, re-

spectively. If we further integrate Equation (1) to give

Z

Z0
=

(

1 +
3

2

√
2GM•

Z
3/2
0

t

)2/3

, (12)

1 By the tidal density of the black hole we mean M•/r3.
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and use the fact that the object(s) that gave rise to

the tidally disrupted tail(s) had a pericenter distance

comparable to the tidal radius, so that Z
3/2
0 /

√
2GM• ≃

H0/
√
GΛ0, then for t & t0 Equation (11) becomes

τ ≃
(

t

t0

)1− 2

3

1

γ−1

, (13)

where

t0 =
2

3

R
3/2
⋆√

2GM⋆

(14)

is roughly the sound crossing time over the original star

of radius R⋆ and mass M⋆.

The existence of the unstable mode implies that per-

turbations to the density at the maximally growing
mode increase with time as ≃ eσmaxτ , which is expo-

nential to a fractional power of time, and the fractional

power depends on the adiabatic index but approaches 1

as γ becomes large. If we denote the dimensionless am-

plitude of the seed perturbation at the maximally grow-
ing mode by δρ0, then the time dependent evolution of

the perturbation to the density at the wavelength kmax

is

δρ

ρ0
≃ δρ0e

σmaxτ , (15)

where ρ0 is the background density (which is declining

owing to the stretching of the tail). The nonlinear phase
of the instability is reached when δρ ≃ ρ0, which is

correspondingly near the time at which we expect the

tail to fragment.

We note that the analysis here assumed that the axis

of the cylinder was confined to a single direction (which
we defined as the z-direction), whereas in reality the

tidal tail ejected from a merger will possess some cur-

vature that results from the non-zero angular momen-

tum of the debris (see Figure 2). This additional aspect
of the problem can be trivially incorporated into the

perturbation analysis, as such curvature amounts to a

z-dependent displacement of the axis of the cylinder,

which corresponds to an m = 1 perturbation (where

perturbations in the φ direction around the axis of the
cylinder vary as ∝ eimφ with m an integer; an m = 1 per-

turbation displaces the axis of the cylinder, analogous to

the way in which an ℓ = 1 perturbation of a spherical

configuration of gas displaces the center of mass of the
sphere). However, it can be shown that such perturba-

tions are stable (Breysse et al. 2014; Coughlin & Nixon

2020), and hence the curvature of the tidal tail has no

impact on the linear growth of the instability.

2.2. Fragmentation timescales and observational

implications for short GRBs

Taking an adiabatic index of γ = 2 for concreteness,

the time at which this nonlinear phase is reached, which

we denote tfrag, is (inverting the above expressions for
the density and τ)

tfrag ≃ t0
ln3
(

1
δρ0

)

σ3
max

. (16)

As discussed in more detail below (see Figure 4 and

the discussion thereof), the initial amplitude of the

perturbation at the maximally growing mode will be
small if the density profile of the neutron star is as

smooth as a γ = 2 polytrope, and nonlinear couplings

between smaller-k perturbations are likely responsible

for the emergence of the most unstable mode. If we
therefore take δρ0 ≃ 10−3, σmax = 0.57 (Table 2 of

Coughlin & Nixon 2020) and – with R⋆ = 11 km and

M⋆ = 1.5M⊙ – t0 ≃ 0.04 ms, then this timescale is

tfrag ≃ 70 ms. (17)

At approximately this time we expect the stream to

fragment into N knots separated by a spacing of
zsep ≃ 2πR⋆/kmax ≃ 30 km along the tail and near

the marginally bound radius, where kmax ≃ 0.96 is

the wavenumber of the maximally growing mode in

units of the cylindrical radius of the tail (see Table 2 of

Coughlin & Nixon 2020). We can estimate the number
N by noting that at this time the length of the stream L

has expanded by an amount L ∝ Z2, and hence, using

Equation (12),

Nupper ≃
L

zsep
≃ kmax

2π

ln4
(

1
δρ0

)

σ4
max

≃ 3 × 103. (18)

This is, however, an overestimate of the true number,

owing to the fact that a substantial fraction of the ma-

terial will have already returned to the black hole by this
time. A simple approximation of the return time of the

most bound debris can be calculated from the tidal and

frozen-in approximations (Lacy et al. 1982; Rees 1988;

Lodato et al. 2009; Stone et al. 2013), which gives

Tfb ≃
(

R⋆

2

)3/2
2πM•

M⋆

√
GM•

≃ 0.5 ms, (19)

where we set M• = 5M⊙ for the black hole mass, though
the comparable size of the neutron star and the black

hole implies that material is much deeper in the poten-

tial well initially and is promptly accreted (see the hy-

drodynamical simulations below). Thus, assuming that
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all of the stream is available to fragment results in a

large overestimate of the number of knots for the types

of encounters considered here. We can determine a lower

bound on the number of knots formed out of the insta-
bility by taking the length of the stream to be of the

order the marginally bound radius, which gives

Nlower ≃
Z

zsep
≃ kmax

2π

ln2
(

1
δρ0

)

σ2
max

≃ 20. (20)

In general we expect the number of fragments to be be-

tween these upper and lower limits, and the exact num-

ber will depend on the disruption dynamics and the mass

ratios involved (though the lower limit is likely more re-

alistic for these systems where the return time of the
most bound debris is much shorter than the fragmenta-

tion time). Depending on the amount of mass contained

in the ejecta, we therefore expect the masses of the frag-

ments to be on the order of 10−3 − 10−4M⋆, and thus
∼ 10−3M⊙ .

After the fragments form we can approximate their

dynamical evolution by assuming that they evolve as

point masses purely in the gravitational field of the black

hole. Using Equation (3), the Keplerian energy ǫ of the
knots at the time they form is given by

ǫ =
1

2
v2 − GM•

z
≃ 5GM•

Z

∆z

Z
, (21)

where ∆z is the distance of a given fragment from the

marginally bound position Z at that time. With the

energy-period relation of a Keplerian orbit, we find that
the return time of the knots within the tail is

Tret = 2π

(

Z

10

)3/2
1√
GM•

(

− Z

∆z

)3/2

. (22)

If we now define the distance of the most bound knot

from the marginally bound radius by −∆Z0, so that the

distance of the nth knot along the tail from the most
bound knot is −∆Z0 + nzsep, then the nth knot returns

at a time

Tret(n) = Tmb

(

1 − n
zsep
∆Z0

)−3/2

, (23)

where

Tmb = 2π

(

Z

10

)3/2
1√
GM•

(

Z

∆Z0

)3/2

(24)

is the return time of the most bound knot, i.e., Tmb =

Tret(n = 0). Adopting the limit of zsep ≪ Z, which

is valid when the number of knots formed is large, the

temporal spacing between the return of successive knots

n + 1 and n is

∆Tret ≃
3

2
Tmb

zsep
∆Z0

{

1 +
5

2
n
zsep
∆Z0

+ O
(

z2sep
∆Z2

0

)}

.

(25)
This expression demonstrates that, while nzsep/∆Z0 .

1, the spacing between the return of successive knots is

roughly constant; using the numbers derived above and

setting ∆Z0 ≃ 0.1Z at tfrag, Tmb ≃ 1 s, and this tem-
poral spacing is ∼ 100 ms. However, as the number of

knots to have fallen back increases, the temporal spacing

between successive knots increases owing to the reduced

binding energy of knots initially at a larger distance, and

the fractional increase is ∼ 5zsep/(2∆Z0). Thus, while
the temporal spacing between the first and second knot

is ∼ 100 ms, the spacing between the 9th and the 10th

is ∼ 240 ms, the 99th and 100th is ∼ 2.6 s, etc. As an

example, Figure 1 illustrates the ratio of the return time
Tret to the return time of the most-bound knot Tmb for

zsep/∆Z0 = 0.01 as a function of the number of knots

to have returned to pericenter n. The red curve shows

the exact dependence, Equation (23), the green, dashed

curve gives the leading-order solution with a constant
return time between knots, and the blue, dot-dashed

curve contains the higher-order correction that accounts

for the secular increase in return time between knots.

These estimates predict that, if the variability in the
lightcurve of a short GRB traces the fallback of ma-

terial to the compact object and the tail is gravita-

tionally unstable to this mechanism, then the spacing

between outbursts should be roughly evenly spaced at

early times, but should lengthen approximately linearly
with the number of flares observed. However, these es-

timates assume that the tail fragments precisely at the

maximally growing mode and generates a specific sepa-

ration between the resulting knots, while in reality there
will be a range of separations owing to the fact that the

tail is unstable to a continuum of wavelengths below a

critical one. Nonetheless, it is likely that there will be

enhanced power in the lightcurve at a frequency corre-

sponding to the inverse of ∆Tret given in Equation (25).
In the next section we compare these analytic predic-

tions to hydrodynamical simulations.

3. HYDRODYNAMICAL SIMULATIONS

3.1. Initial setup

We use the smoothed particle hydrodynamics (SPH)

code phantom (Price et al. 2018) to simulate the dis-

ruption of a 2.0M⊙ neutron star (NS) by a 5M⊙ black

hole (BH). We use a Paczyńsky-Wiita (PW) potential



6 E. R. Coughlin et. al.

0 10 20 30 40 50

1.0

1.5

2.0

2.5

n

T

r�
✁

/
T

♠
✂

Increasing ΔT✄☎✆

Constant ΔTret

Exact

Figure 1. An example of the return time of the nth knot
Tret, normalized by the return time of the most-bound knot
Tmb, when the knots are separated along the stream by
zsep = 0.01∆Z0, where ∆Z0 is the distance between the
most bound knot and the marginally bound radius at the
time that fragmentation occurs. The black curve gives the
exact solution (Equation 23), the green, dashed curve shows
the leading-order solution for which the return time of suc-
cessive knots is constant, and the blue, dot-dashed curve
contains the higher-order correction that accounts for the
increase in the return time between knots as the number of
knots n increases.

(Paczyńsky & Wiita 1980) to model the gravitational

field of the BH, and we set its accretion radius – inside

of which particles are “accreted” and removed from the

simulation – to its Schwarzschild radius. The NS is mod-
eled as a pure polytrope with a radius of 11 km, and we

focus primarily on the case where the polytropic index

(equal to the adiabatic index) is γ = 2. We maintain

a polytropic equation of state for the entire duration of

the simulation, i.e. the pressure is related to the den-
sity by P = Kργ where both K and γ are global fixed

constants2, which implies that any heat generated from

viscosity or shocks is lost from the system. Our fiducial

resolution is Np ≃ 1.4 × 107 SPH particles. All other
aspects of the modeling as related to the code (e.g., the

implementation of self-gravity) are identical to those de-

scribed in Coughlin & Nixon (2015). In Appendix A we

discuss the caveats of our numerical approach and spec-

ulate as to the effects of relaxing some of our assump-
tions (specifically, the disc physics in Section A.1, the

inclusion of general relativity in Section A.2, the micro-

physics and thermal physics of the tidal tails in Section

A.3, the numerical resolution in Section A.4, and the
variation of the simulation parameters in Section A.5).

2 Note that, since the code is Lagrangian, this is identical to
solving the entropy equation in the absence of shocks.

We do not model the inspiral of the binary system

from well outside the tidal disruption radius of the NS,

which would, at the very least, require the inclusion of

post-Newtonian terms and an accurate modeling of the
tidal dissipation in the star. Instead, we initialize the

SPH particles with the velocity of the center of mass

of the star, which itself is calculated to reproduce a

parabolic orbit with a pericenter distance equal to the

tidal disruption radius using the PW potential. Due
to the nature of the encounter (near equal mass, close

approach) the usual approach to estimating the tidal

radius – at which the star is completely disrupted – is

inaccurate. Instead we experimented with the pericen-
ter distance for the NS orbit and found that a peri-

center of 3GM•/c
2 (where M• is the mass of the black

hole) is the largest pericentre that yields a fully dis-

rupted NS and thus an appropriate debris stream. Such

a “plunge” into the tidal radius may happen naturally
on a single passage in a very dense stellar environment

such as a globular cluster (e.g., Rosswog et al. 2009), or

may arise from the rapid (i.e., sub-orbital-time) inspi-

ral that accompanies the final stages of the tidal and
gravitational-wave induced coalescence (Lai et al. 1994;

Rasio & Shapiro 1994). Our motivation for this ap-

proach parallels the focus of this paper, which is to as-

sess the gravitational stability of the tidal tails formed

as a byproduct of the inspiral, and not to understand
the precise mechanism of the production itself. A num-

ber of other authors (e.g., Lee & Ramirez-Ruiz 2007;

Bauswein et al. 2013; Kyutoku et al. 2013; Brege et al.

2018; Foucart et al. 2019) have demonstrated that tidal
tails are a fairly generic consequence of inspiral events

with more realistic initial conditions (see also Section

A.5 below).

3.2. Results

Figure 2 shows the morphology of the disrupted debris

following the tidal interaction between the neutron star

and the black hole; here the column density of the ma-
terial projected onto the plane of the binary is plotted,

with brighter regions indicating denser material. The

top-left, top-right, and bottom panels show the distri-

bution of the material immediately post-pericenter, after

the disc has formed but the tidal tail remains smooth,
and after the tail has fragmented, respectively. This fig-

ure demonstrates that, as a consequence of the energy

spread imparted by the tidal potential of the black hole,

most of the neutron star material (& 90% of the ini-
tial mass of the star) is tightly bound to the black hole

and is either swallowed directly or promptly forms an

accretion disc. However, ∼ 10% of the initial neutron

star mass is ejected in the form of a tidal tail that, af-
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Figure 2. The morphology of the disrupted debris following the tidal destruction of a neutron star by a black hole. Here the
mass of the neutron star is 2M⊙ with a radius of 11 km, and the black hole (shown by the gray circle) has a mass of 5M⊙ and
an accretion radius – inside of which SPH particles are “accreted” and removed from the simulation – equal to its Schwarzschild
radius (see Section 3.1 for more details of this specific simulation). Each panel corresponds to a different time post-disruption,
as shown in the top-right corner of each panel. Colors indicate the column density projected onto the plane of the orbit of the
original star, with brighter (darker) colors indicating regions of enhanced (reduced) density. The tidal potential of the black hole
causes a large fraction (& 90%) of the neutron star to immediately accrete onto the black hole, which forms a prompt accretion
flow, while ∼ 10% of the mass is launched out from the system in the form of a tidal tail. At late times (∼ few × 0.1 s) this
ejected tail fragments under its own self-gravity, forming knots that return to and impinge upon the black hole-disc system, as
can be seen in the bottom panel.

ter many dynamical times at the tidal radius (note that

GM•/c
3 ≃ 2.5 × 10−5 s here), fragments and falls back

onto the black hole-disc system.
Figure 3 illustrates the fallback rate Ṁ onto the black

hole from the tidally ejected tail in units of solar masses

per second as a function of time in seconds. To mea-

sure this quantity, we reran the same simulation that

yields the disc-tail structure in Figure 2 but artifi-
cially increased the accretion radius of the black hole

to 20GM•/c
2 ≃ 100 km at a time of 8.75 × 10−3 s.

This curve therefore represents the rate at which ma-

terial from the tail returns to pericenter (or impacts the

disc; see discussion below). We checked the debris dis-
tribution between this simulation and the full simulation

at late times and find no change in the stream structure

or evolution. For times t . 0.1 s, the curve in Figure 3

shows a smooth decline that is well-approximated by the

blue, dashed curve Ṁ ∝ t−5/3, which is the scaling ex-
pected from the return of material from the marginally

bound radius within the tail (e.g., Chevalier 1989). How-
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Figure 3. The fallback rate onto the black hole from the
returning tail in units of Solar masses per second as a func-
tion of time in seconds. After a time of ∼ 0.1 s, the fallback
rate starts to exhibit variability from the return of the knots
that have gravitationally condensed out of the stream. The
blue, dashed curve shows the ∝ t−5/3 scaling predicted for
material returning from the marginally-bound radius within
the stream, whereas the scaling ∝ t−2.4 is the steeper scaling
predicted for material that is being affected by the presence
of the clumps (Coughlin & Nixon 2019).

ever, for times t & 0.1 s, the fallback rate starts to ex-

hibit large fluctuations as discrete clumps of material

return to the black hole. Moreover, if we approximate

the region of the tail in between clumps as dominated by

the gravitational field of the black hole and the trailing
clump, then using Equation (15) of Coughlin & Nixon

(2019) and the fact that the ratio of the clump mass to

the black hole mass is µ ≃ 0.01 predicts that the return

of this material should scale as Ṁ ∝ t−2.4. This scaling
is shown by the orange, dashed curve in this figure, and

provides a good approximation to the average decline

(i.e., in between the accretion of clumps) exhibited by

the fallback curve.

The blue curve in Figure 4 shows the product ∝ ρ×Z2,
where ρ is the density of an SPH particle that, by the

time appropriate to the bottom panel of Figure 2, be-

longs to a clump that forms out of the instability and

Z is the location of the marginally bound radius within
the tail (we have examined particles in several clumps

and this behavior is typical of each clump). The quanti-

ties ρ0 and Z0, being the initial density and position of

the marginally bound orbit, are measured at a time of

t = 2.5×10−3 s (see the top-left panel of Figure 2). The
density is plotted as a function of the time-like variable

τ , which scales with the center of mass position as in

Equation (11). We find for this specific simulation that

√
GΛ0

H0

Z
3/2
0√

2GM•

1
3
2 − 1

γ−1

≃ 7.0, (26)
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Figure 4. The blue curve shows, on a log-linear scale, the
density of an SPH particle that resides in a knot by the
end of the simulation, normalized by its initial density ρ0
and multiplied by (Z/Z0)

2, where Z is the position of the
marginally bound orbit; Z0 and ρ0 are both measured at a
time of 2.5 × 10−3 s post-disruption (see the top-left panel
of Figure 2) and τ is a time-like variable (see Equation 11).
In the absence of an instability, this curve would only show
stable oscillations, with an oscillatory frequency given ap-
proximately by the f -mode of a γ = 2 polytrope, which is
shown by the green, dashed curve. There is a slight growth,
however, at early times that is due to the aggregate of weakly
growing, very long wavelength perturbations that are all un-
stable; the slope of the green, dashed curve is chosen to
match this slow growth to highlight the agreement between
the prediction of the f -mode oscillatory frequency and the
numerical results. The red, dashed line shows the growth
rate predicted for the maximally growing mode, the ampli-
tude of which – for this simulation – likely grows primarily
out of nonlinear couplings of the more weakly growing, long
wavelength perturbations.

which normalizes the definition of τ . As noted at the
end of Section 2, the fact that this number is of the

order unity is expected based on the fact that the star

was successfully disrupted.

If the tidal tail were hydrodynamically stable, then

the product ρZ2 would exhibit gravito-acoustic oscil-
lations at frequencies appropriate to the fundamental

modes of an adiabatic cylinder, but the average value of

this product would be unchanged. The dashed, green

curve in this figure shows a sinusoidal dependence that
has a frequency given by the fundamental mode of a

γ = 2, polytropic cylinder, the frequency of which is

σ ≃ 1.7 (Coughlin & Nixon 2020). We see that this

mode does, indeed, characterize the oscillatory nature

of the density perturbations, and we emphasize that the
solution does appear to be periodic in τ , implying that

the declining sound speed of the stretching stream in-

duces a periodicity in time t that varies as ∼ sin(σt1/3).

However, there is also a slowly increasing trend exhib-
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ited alongside the oscillatory variation (from τ = 0 to

τ ≃ 17), which scales approximately as ∝ e0.07τ (note

that Figure 5 is on a log-linear scale). This growth rate,

however, is much smaller than the one corresponding to
the maximally-growing mode, being ∝ e0.57τ .

This very slow increase in the product ρZ2, and the

corresponding instability, arises from the fact that the

stream possesses an initial perturbation from the poly-

tropic density profile of the star. Specifically, instead
of being exactly flat, at early times the density profile

of the tidal tail possesses a long-wavelength perturba-

tion from the stretching of the centrally-peaked density

profile of the spherical polytrope (i.e., we can approx-
imate the stream density as the spherical density pro-

file of the star stretched in one dimension, which has

a maximum near the stellar center of mass). The ma-

jority of the power of the Fourier decomposition of this

perturbation is contained at small Fourier wavenumber
k (wavelengths much greater than the radius of the tail

H), all of which are unstable but grow at very slow rates

(see Figure 4 of Coughlin & Nixon 2020). As the stream

stretches, all of these modes grow and give rise to the
slow increase of the product ρZ2.

In addition to growing linearly, however, nonlin-

ear couplings between the modes also transfer power

to higher k (smaller wavelengths). Since there is a

wavenumber with the fastest growth rate, over time
this mode preferentially “steals” power from the longer

wavelength modes and emerges at later times. We see

this behavior at a time of τ ≃ 17, where the growth

rate of the instability steepens and is well approximated
by the prediction for the fastest-growing mode (the red,

dashed line in this figure).

To support the notion that we are seeing the emer-

gence of the maximally growing mode, the left panel of

Figure 5 shows the density profile as a function of ra-
dius, binned into ∼ 1000 radial bins and averaged over

the small solid angle of the stream, at τ ≃ 17 (or a time

post-disruption of t = 0.049 s), which is at the onset of

the appearance of the maximal growth rate in Figure
4. Each point corresponds to a local maximum in the

density of the stream, and the vertical, dashed line in

this figure shows the location of the marginally bound

radius at this time (i.e., the fluid element at this loca-

tion has a Keplerian specific energy of zero). The right
panel of this figure shows a histogram of the distance (in

km) between successive clumps binned into widths of 10

km. One prediction from the linear perturbation theory

(Coughlin & Nixon 2020) is that the maximally grow-
ing mode for a γ = 2 polytrope occurs at a wavenumber

of kmax ≃ 0.97, and that the spacing between maxima

should preferentially be given by ≃ 2πH0/kmax ≃ 53 km

for this simulation; this spacing is shown by the verti-

cal, dashed, blue line, which agrees well with the peak

in the histogram. A second prediction is that there is

a larger wavenumber (smaller wavelength) kcrit ≃ 1.75
below which perturbations are stable, and hence den-

sity maxima within the stream separated by a length

less than ≃ 2πH0/kcrit ≃ 29 km should be suppressed;

this spacing is shown by the vertical, dashed, red line,

and does reproduce the observed cutoff in the spacing
distribution of the local maxima.

To summarize and compare the numerical results here

with the analytic calculations of Section 2, the simula-

tions here yield a fragmentation time of around tfrag ≃
50 ms, while we estimated this time to be ∼ 70 ms;

a preferred spacing between clumps of ∼ 53 km, com-

pared to the prediction of ∼ 30 km; and a total number

of ∼ 40 knots that condense out of the stream, which is

between the upper and lower limits we anticipated (but
much closer to the lower limit of 20, as expected from the

fact that a substantial amount of material has accreted

by the time fragmentation occurs). The fallback rate

in Figure 3 also shows that variability begins around a
time of 0.1 s, while the predicted time was closer to ∼ 1

s. The spacing between the spikes in Figure 3 is also on

the order of ∼ 10− 100 ms, which is consistent with the

prediction, and there does appear to be an increase in

the temporal separation between spikes in the fallback
rate as time advances.

4. OBSERVATIONAL IMPLICATIONS

The preceding sections demonstrate that the tail of

ejecta shed from the destruction of a neutron star dur-

ing a compact object merger can fragment under its own
self-gravity into self-bound knots, and that this fragmen-

tation occurs on a timescale of tens of milliseconds (e.g.,

Equations 16 and 17). The number of knots formed is

generally on the order of tens owing to the short return
time of the most bound debris relative to the fragmen-

tation time (e.g., Figure 2 and Equations 18 and 20);

the bound knots return to the disrupting object on a

timescale of hundreds of milliseconds, while the unbound

knots escape from the system on hyperbolic trajectories
and at ∼ 10% the speed of light. Here we briefly discuss

the observational implications of these findings.

4.1. Prompt Emission

With our simulations that adopted a post-Newtonian

prescription for the gravitational potential of the dis-
rupting black hole, the pericenter distance of the neu-

tron star implied that the angular momentum of the re-

turning material was sufficient to form an accretion flow

outside of the innermost stable circular orbit (ISCO) of
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Figure 5. Left: The radial density profile of the stream, averaged over the stream width, at a time of ∼ 0.05 s post-disruption.
Shortly after this time the nonlinear phase of the instability sets in, and the stream fragments into a collection of knots; this
time corresponds roughly to τ ≃ 17 in Figure 4, and is therefore predicted to be near the onset of the runaway growth of the
most unstable mode. The points coincide with local maxima in the density profile. The vertical, dashed line shows the location
of the marginally bound radius within the stream at this time. Right: A histogram of the spacing (in units of km) between the
black points in the left panel of this figure, where bin widths were set to 10 km; this bin width is a compromise between over
and undersampling the number of points within each bin. The vertical, blue, dashed line is the prediction for the spacing of
the density peaks that arises from the maximally growing mode, being ∼ 53 km for this specific simulation. The vertical, red,
dashed line is the minimum spacing of the density maxima, below which perturbations are predicted to be stable and runaway
growth should not occur; this spacing corresponds to ∼ 2πR⋆/kcrit, where kcrit ≃ 1.75 is the critical wavenumber (relative to
the cylindrical radius of the tail) above which perturbations are stable, and is ∼ 29 km for this simulation.

the remnant. As such, the material retained enough an-

gular momentum to circularize and form a large-scale
disc that spread viscously over time (Figure 2). As

knots returned to pericenter, they impacted the disc

and generated shocks, and in our simulation the heat

from these shocks was instantaneously radiated. More

realistically, however, a large fraction of the heat will
be trapped in the accretion flow, which will inflate the

disc (though the material may still radiate a signifi-

cant amount of energy in the form of neutrinos; e.g.,

Lee et al. 2009) and significantly lengthen the amount of
time over which the radiation from such shocks is emit-

ted from the τ ≃ 1 surface; the accretion rate is also ex-

tremely super-Eddington3 and the optical depth is very

large to radiation4 and even to neutrinos in the inner re-

gions (e.g.,Woosley 1993; Popham et al. 1999; Lee et al.
2009; Siegel & Metzger 2018). Consistent with previous

works, we thus conclude that incorporating the effects

3 Adopting a radiative efficiency of η = 0.1, the Eddington
accretion rate of a 5M⊙ black hole with an electron scattering
opacity of κes = 0.34 cm2 g−1 is ṀEdd ≃ 4 × 10−15M⊙ s−1,
compared to the values of ∼ 1M⊙ s−1 we obtain for the fallback
rate at early times from the simulation; see Figure 3.

4 The outer disc radius of the simulation in Figure 2 is R ∼ 100
km, and hence a characteristic optical depth is τ ≃ ρκesR ≃

M⋆κes/R2
≃ 6 × 1018; this estimate – which assumes a spherical

distribution of material – is clearly an over (under) estimate out-
side (inside) of the disc midplane, but is nonetheless a measure of
the extreme optical depths encountered in these compact object
mergers.

of the radiation field and neutrinos would likely result

in the formation of an optically thick, relativistic out-
flow, the likes of which can power the prompt emission

of a short GRB (e.g., Goodman 1986; Paczynski 1986;

Krolik & Pier 1991) but would likely hinder the direct

detection of the radiation generated by knots impacting

the accretion flow.
On the other hand, if the jetted activity thought to

be responsible for the gamma-ray production is linked

to and directly proportional to the accretion rate, then

– if the viscosity present in the accretion flow is large
enough – the changes in the fallback rate as knots re-

turn to pericenter will induce a comparable variabil-

ity in the accretion rate and central engine power. If

the viscosity is large then this variability can occur on

timescales as short as the dynamical time within the
disc, on the order of ∼ tens of ms, consistent with ob-

servations of the prompt γ-ray emission and early X-

ray emission (e.g., Klebesadel et al. 1973; Gehrels et al.

2006; Margutti et al. 2010, 2011). As noted in Section
A.1, we did not employ any explicit physical disc viscos-

ity in our simulation, and correspondingly the rate of

viscous accretion is artificially low. Specifically, the nu-

merical viscosity in our simulated disc is much smaller

than the viscosity expected from, e.g., the magnetoro-
tational instability (MRI) in fully ionized discs, which

observations indicate has a Shakura & Sunyaev (1973)

α ∼ 0.3 (King et al. 2007; Martin et al. 2019).



Variability in Short Gamma-ray Bursts 11

If such hydromagnetic turbulence is active in these

discs, it is also possible that the accretion timescale of

the material within the disc could be shorter than the

fallback time of the most bound clump or the time in
between the return of successive knots. In this scenario,

much of the gas will have been depleted from the vicin-

ity of the returning knots, and – instead of crashing

into and merging with the disc – each knot will be dis-

rupted5 upon returning to pericenter. These secondary
disruption episodes will fuel further accretion onto the

compact object, and may “restart” the central engine in

quasi-periodic bursts (cf. King et al. 2005).

Moreover, if the black hole is rotating at an angle that
is inclined with respect to the initial orbital plane of the

binary, the disc that forms will be inclined with respect

to the returning debris (see, e.g., Stone & Loeb 2012;

Franchini et al. 2016; Ivanov et al. 2018 for discussion

of how this applies to stellar disruption by supermassive
black holes). In this case, even if a large-scale disc is

present at the time that knots return, the knots may

pass through the disc at an oblique angle and at a dis-

tance much larger than pericenter; upon reaching peri-
centre they are disrupted, forming secondary accretion

flows that interact with one another. Such debris or-

bits may interact at different orbital phases, driven by

nodal and apsidal precession, leading to shocks and sub-

sequent accretion (cf. Nixon et al. 2012). Over time the
reservoir of gas that builds may, after accounting for the

effects of radiation pressure, resemble more of a quasi-

spherical envelope that enshrouds the black hole, with

bursts of accretion driven by the interaction of the pre-
cessing discs that form. We note that if the spin of

the accretor is primarily determined by the angular mo-

mentum of the recently merged binary, as expected for

nearly equal mass mergers, then it is unlikely that the

ejected streams will be strongly misaligned with the ac-
cretor’s spin, but nonetheless a significant spin-debris

misalignment may be possible in some cases (especially

in black hole-neutron star mergers, where the mass ratio

can deviate substantially from unity).

4.2. Extended Emission

A number of short gamma-ray bursts also display

“extended emission,” which is softer γ-ray/X-ray emis-
sion that is not generated by the interaction of ejecta

with surrounding material, continues for hundreds of

seconds following the prompt burst, and can contain

5 Assuming that the density of the collapsed objects is of the or-
der of or less than the density of the original neutron star; this will
always be the case if the gas retains the same polytropic equation
of state as the original star, such that the entropy and adiabatic
index remain unaltered throughout the disruption.

as much as or more energy than the prompt spike of

emission (e.g., Lazzati et al. 2001; Della Valle et al.

2006; Gehrels et al. 2006; Nakar 2007; Perley et al.

2009; Norris et al. 2011; Kisaka et al. 2017; Burns et al.
2018). As discussed by other authors (e.g., Faber et al.

2006; Lee & Ramirez-Ruiz 2007; Metzger et al. 2010;

Desai et al. 2019), the late-time fallback of material to

the black hole (and the continued accretion thereof) is

one promising means of producing this emission, and
our results here serve to further substantiate this origin.

Additionally, this late-time emission is often highly

variable, and on timescales much shorter than the ∼ 100

second duration of the extended emission itself, which
suggests that the emission arises from near the compact

object. If the extended emission is indeed fueled by the

fallback of weakly bound material from the tidal tail,

this variability can be explained by the gravitational in-

stability of the stream identified here and is driven by
the return of knots to the compact object. The mech-

anism responsible for communicating the fallback rate

to the black hole, and ultimately how this increased en-

ergy and (presumably) magnetic flux at the event hori-
zon translates into an increase in the jet power, dictates

the relative fluence of energy between the prompt and

extended emission. Depending on how this mechanism

operates, this model for the powering of the extended

emission may be consistent with scenarios in which the
fluence of the extended emission exceeds that in the

prompt emission (as identified in, e.g., Gehrels et al.

2006; Perley et al. 2009). For example, while the raw

fallback rate in Figure 3 contains a much larger mass
flux at earlier times, which naively translates to a larger

accretion luminosity, the outward transport of angular

momentum in the disc implies that a large fraction of

this matter could be contained in a reservoir that ac-

cretes at a later time. In this case, the extended emission
would contain an amount of mass (and would liberate

an amount of accretion energy) that could conceivably

exceed that contained in the prompt emission.

4.3. R-process & Kilonova

As noted above, the knots that form out of the grav-

itational instability are distributed over the bound and

unbound segment of the tail. When the mass ratio of
the inspiraling objects is fairly dissimilar from unity,

as is the case for a black hole-neutron star merger

considered here, the tidally ejected tail contributes

substantially to the r-process production of heavy
elements and the corresponding kilonova afterglow

(e.g., Lattimer & Schramm 1974, 1976; Lattimer et al.

1977; Meyer 1989; Rosswog et al. 2000; Metzger et al.

2010; Metzger & Berger 2012; Barnes & Kasen 2013;
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Barnes et al. 2016; Radice et al. 2018; Tsujimoto et al.

2020). Indeed, if the angular momentum of the bound

material places the disc within the ISCO of the black

hole, the unbound tail provides the only source of r-
process enrichment. If the unbound tail rapidly (on the

order of ms; see Section 2) fragments into a number of

distinct knots separated by tenuous material, one would

expect qualitative differences in the appearance of the

kilonova (compared, e.g., to a spherically symmetric
outflow) that occurs days after the disruption, owing to

variations in the optical depth along the filament and

the reduction in the total emitting surface area. The

mixing of the r-process-enriched gas would also be less
efficient because of the much smaller effective volume

maintained by the ejecta.

4.4. Afterglow

Alongside the prompt γ-ray and early X-ray emis-

sion, the interaction between the relativistic ejecta

and the circumburst medium should generate emission
at longer wavelengths in the form of an X-ray, opti-

cal and radio afterglow (e.g., Rees & Meszaros 1992;

Mészáros & Rees 1997; Sari et al. 1998; Nakar & Piran

2011; Margalit & Piran 2020; though in some short
GRBs the relatively “clean” environment of a short

GRB, being in the outskirts of a galaxy following a na-

tal kick, correspondingly reduces the brightness of this

component of the emission; e.g., Narayan et al. 1992;

Nysewander et al. 2009). To the extent that the rate
of return of material to the compact object influences

the formation and energetics of the relativistic outflow,

we would qualitatively expect the sudden enhancement

in the accretion rate through the return of a discrete
knot to imprint itself on the afterglow, possibly in a way

that would mimic the “refreshed shock” scenario (e.g.,

Rees & Mészáros 1998; Kumar & Piran 2000).

In addition to the relativistic outflow formed from the

central engine, a radio transient should also be generated
from the interaction between the less relativistic, un-

bound tail and the surrounding medium. The fragmen-

tation of this tail into a number of discrete knots greatly

reduces its cross-sectional area, which correspondingly
dramatically inhibits the production of this distinct ra-

dio transient. As for the case of r-process emission, this

would be the only source of radio emission if the angu-

lar momentum of the fallback disc is insufficient to allow

the material to circularize outside of the ISCO.

4.5. Gravitational Waves

Finally, in addition to electromagnetic counterparts,

the successive return of knots to pericenter will generate

a distinct gravitational-wave signal, and will be charac-

terized by a train of “chirps” – occurring as individual

knots return to pericenter – that accompany potential

flares in the electromagnetic signal as the knots are dis-

rupted to form secondary accretion flows or impact the

disc. The amplitude of the gravitational-wave signal will
clearly be reduced dramatically below that of the ini-

tial inspiral owing to the much smaller mass ratio, and

will only be detectable by current facilities (i.e., LIGO;

Aasi et al. 2015) if the event is very nearby (. 10 Mpc),

but may be observed by future generation facilities at
more reasonable distances. The detection of this con-

comitant gravitational wave signal would be among the

most convincing pieces of evidence to support the exis-

tence of this instability operating in short GRBs.

5. SUMMARY AND CONCLUSIONS

Our analytical arguments (Section 2) demonstrate

that, if the gas comprising the tidal tails formed during
the merger of two compact objects is adiabatic and has

an effective adiabatic index γ that satisfies γ ≥ 5/3, then

such tails are unstable and fragment globally – along the

axis of the tail – under their own self-gravity into knots
with radii of the order the width of the tail. Our sim-

ulations of the disruption of a 2M⊙ neutron star, mod-

eled as a γ = 2 polytrope with a radius of 11 km, by a

5M⊙ black hole that adopt an adiabatic index of γ = 2

(Section 3) show agreement with the predictions of the
spacing of the knots that condense out of the instability

(Figure 5), the number of knots formed, and the linear

growth of the instability itself (Figure 4). The return of

these knots to the compact object results in variability
in the fallback rate (Figure 3) on timescales commensu-

rate with our predictions, being on the order of tens of

millseconds.

As described in more detail in Section 4, this timescale

over which variability occurs in the fallback rate is
roughly consistent with observed variability in the

prompt emission of short GRBs. Thus, depending on

how rapidly these changes in the fallback rate can be

communicated to the accreting object and translated
to an accretion rate, the return of individual knots to

pericenter can plausibly contribute to the flaring in the

lightcurves of short GRBs. The return of these knots

to pericenter also continues to later times (i.e., much

later than the ∼ 1 − 2 second duration of the prompt
emission), and can generate variability in the “extended

emission” observed in some sources. Owing to its sub-

stantially smaller cross-sectional area, the fragmentation

of the unbound tail into discrete knots will also signif-
icantly reduce the intensity of the radio transient that

forms as the tail slams into the circumburst medium.

Finally, the return of discrete knots to pericenter should

also create a gravitational-wave signal, consisting of a
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train of “chirps,” though it will likely be very difficult

to detect owing to the relatively small amount of mass

contained in individual knots.

Here we focused primarily on the case of a neu-
tron star disrupted by a black hole, as these unequal-

mass-ratio encounters result in a significant amount

of dynamical ejecta; in our simulation we found that

∼ 10% of the initial star comprises the ejecta, which

agrees well with other, more detailed simulations (e.g.,
Kyutoku et al. 2015). On the other hand, neutron

star-neutron star mergers – for which the mass ra-

tio is generally much closer to unity – eject less mass

(∼ 0.01 − 0.1M⊙) prior to the coalescence of the ob-
jects (e.g., Shibata & Hotokezaka 2019). As we noted

in Section 2, the timescale for the instability to de-

velop is directly related to the line mass of the tidal tail,

with larger (smaller) amounts of mass yielding shorter

(longer) instability timescales. We therefore expect that
for short GRB progenitors with mass ratios closer to

unity, such as neutron star-neutron star mergers, the in-

stability identified here will take longer to develop and

the mass contained in the knots will be smaller, which
in general will make its presence more difficult to detect.
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Paczyńsky, B., & Wiita, P. J. 1980, A&A, 500, 203

Perley, D. A., Metzger, B. D., Granot, J., et al. 2009, ApJ,

696, 1871, doi: 10.1088/0004-637X/696/2/1871

Perna, R., Armitage, P. J., & Zhang, B. 2006, ApJL, 636,

L29, doi: 10.1086/499775

Popham, R., Woosley, S. E., & Fryer, C. 1999, ApJ, 518,

356, doi: 10.1086/307259

Price, D. J. 2007, PASA, 24, 159, doi: 10.1071/AS07022

Price, D. J., Wurster, J., Tricco, T. S., et al. 2018, PASA,

35, e031, doi: 10.1017/pasa.2018.25

Radice, D., Perego, A., Hotokezaka, K., et al. 2018, ApJ,

869, 130, doi: 10.3847/1538-4357/aaf054

Rasio, F. A., & Shapiro, S. L. 1994, ApJ, 432, 242,

doi: 10.1086/174566

Read, J. S., Lackey, B. D., Owen, B. J., & Friedman, J. L.

2009, PhRvD, 79, 124032,

doi: 10.1103/PhysRevD.79.124032

Rees, M. J. 1988, Nature, 333, 523, doi: 10.1038/333523a0

Rees, M. J., & Meszaros, P. 1992, MNRAS, 258, 41,

doi: 10.1093/mnras/258.1.41P
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APPENDIX

A. CAVEATS OF THE NUMERICAL APPROACH

Here we discuss some of the caveats and assumptions of our numerical models, and we speculate as to the impact of

relaxing some of these assumptions.

A.1. Disc physics

The neutron star material that is deeper in the gravitational potential well of the black hole (at the time it crosses the

tidal radius) promptly forms an accretion disc as it precesses relativistically and intersects itself. Over time, material

from the returning tail feeds this disc, and it grows in radial extent as the angular momentum budget increases. By

the end of the simulation (∼ 2 seconds), the disc is extended in radius out to ∼ 100 km, and knots returning to the
black hole impinge upon this disc as reflected in the fallback rate (Figure 3).

We emphasize, however, that our model of the disc is likely not physically appropriate to the extreme conditions

under which the disc forms and evolves. For one, our equation of state assumes that any heat generated from the

production of shocks – which predominantly mediate the disc formation as general relativistic apsidal precession causes
the material to self-intersect (e.g., Rosswog & Davies 2002) – can be efficiently radiated from the system, whereas the

optical depths are so large that this energy should be trapped and heat the flow. The temperatures and densities

are also so high that neutrino cooling and even nuclear burning are not negligible, both of which will modify the

thermodynamics and feed back onto the fluid dynamics of the flow (e.g., Fernández & Metzger 2016). Indeed, the

densities are so high at early times that neutrinos can couple efficiently to the gas, generating a neutrino-driven wind
(e.g., Fernández & Metzger 2013; Siegel & Metzger 2018). Our disc, on the other hand, retains a polytropic equation

of state, while these other effects would cause the disc to puff up in the vertical direction and have an associated

outflow.

Our simulations also do not employ magnetic fields, which likely lead to additional dissipation through the existence
of the magnetorotational instability (Balbus & Hawley 1991). This instability may manifest itself as an increase in

the effective viscosity coefficient α that controls the rate at which angular momentum is transported within the disc

(Shakura & Sunyaev 1973). The viscosity present in our simulations, by contrast, is only at the numerical level, which

is small for the large number of particles (Np & 107) we used. As a consequence, the accretion rate of the black hole is

unrealistically small in our simulations, and the fallback rate in Figure 3 is likely a better approximation of the mass
flux at the event horizon (modulo a suitable time lag) in a realistic disc that has α ∼ 1.

Our simulations also do not account for radiative processes; while the densities and temperatures are initially so

high that neutrino cooling and heating are the dominant form of the transport of accretion energy (e.g., Popham et al.

1999), eventually the temperature and density in the inner disc regions will drop to the point where neutrino production
is inefficient. In this case, the dominant transport mechanism will be the advection of radiation throughout the disc,

but the accretion luminosity will be so well in excess of the Eddington limit of the black hole (even for extremely small

radiative efficiencies) that it is difficult to see how outflows will be avoided (e.g., Blandford & Begelman 1999). The

radiation will also be trapped within the flow (Begelman 1978), leading to – in addition to outflows – a much more

vertically extended disc structure than we find here.

A.2. General relativity

Our simulations approximate the gravitational field of the black hole with a Paczynski-Wiita potential; in particular,

we employ −GM•/(r−RS) for the potential of the black hole, where RS is the Schwarzschild radius of the black hole.

This approach is clearly much more simplistic than solving the Einstein equations, which is the methodology employed

by very recent simulations of the mergers of compact objects (e.g., Bauswein & Stergioulas 2019; Foucart et al. 2019).
Solving the Einstein equations for the dynamical evolution of the spacetime is necessary for accurately modeling

the disc physics in the regions in the immediate vicinity of the black hole event horizon. It is also necessary for

understanding the initial, tidal deformation of the neutron star, as for our setup – a 5M⊙ black hole and a 2M⊙

neutron star with a radius of 11 km – the fiducial tidal radius is comparable to its gravitational radius. Indeed, the
pericenter distance of the star that leads to the disruption in Figure 2 was 3RG, which is likely to be stretching the

accuracy of the Paczynski-Wiita potential (see, e.g., Figure 4 of Tejeda & Rosswog 2013).

Including general relativity would likely strengthen the tidal interaction that results in the disruption of the star,

as it is generally the case that pseudo-Newtonian and effective potentials underpredict general relativistic quantities
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(e.g., the relativistic advance of periapsis, which can be thought of as an additional term that enhances geodesic

deviation, is generically underpredicted by effective potentials; e.g., Tejeda & Rosswog 2013). Consequently, it is

likely that a general relativistic treatment, or including a potential that maintains higher-order corrections in r/RS,

would not require as close a pericenter distance to completely disrupt the star (see Section A.5); for the disruption
of Solar-like stars by supermassive black holes, a partial disruption with a Newtonian treatment of the gravitational

field of the supermassive black hole may become a full disruption when one uses general relativity (Gafton et al. 2015;

Gafton & Rosswog 2019; Stone et al. 2019).

Properly accounting for relativity would clearly enhance the physicality of the initial disruption and the disc physics.

However, this would also add significantly to the computational cost of the simulation, and would not be essential
for understanding the fragmentation of the tidal tails – the main focus of this paper – which occurs at hundreds to

thousands of gravitational radii of the black hole.

A.3. Microphysics and thermal physics of the tidal tails

The evolution of the gas in our simulation is adiabatic with a polytropic index of γ = 2. As discussed in Section 3,

this choice was motivated by the theoretical work on the nuclear equation of state, which suggests that the effective

adiabatic index of the neutron star material is γ ∼ 2 − 3, and that more accurate modeling seems to indicate that
piecewise-polytropic functions can reproduce more complicated equations of state (Read et al. 2009). This approach is

also identical to what appears to have been done in many previous investigations of this problem (e.g., Lai et al. 1994;

Lee & Kluźniak 1999; Rosswog et al. 1999; Lee et al. 2001; Faber et al. 2006; Lee & Ramirez-Ruiz 2007; Ruiz et al.

2020), and we wanted to test the prediction that these tails are subject to gravitational fragmentation if this thermo-
dynamic simplification is made.

More realistically, however, the decline of the density of the tidal tail prior to the nonlinear phase of the instability

(see Figure 4) implies that the extremely high densities characteristic of the nuclear equation of state ρ ∼ 1014 g

cm−3 – and correspondingly the high value of γ – will no longer be maintained. As the density declines, it becomes

energetically favorable for neutrons and protons to drip out from the denser regions of the stretching material, and β
decay and nuclear fission of extremely neutron-rich nuclei result in the formation of less heavy elements alongside the

neutron fluid; this also reduces the overall neutron to proton fraction. As this occurs the nucleons and electrons start to

behave more classically and possess an adiabatic index that is better approximated between 4/3 and 5/3. The equation

of state described by Lattimer & Swesty (1991), Shen et al. (1998), and those discussed in Shapiro & Teukolsky (1983)
exhibit this general behavior (see, e.g., Figure 5 of Rosswog & Davies 2002), as do more recent equations of state (e.g.,

Shen et al. 2011; Hempel et al. 2012; Steiner et al. 2013; Banik et al. 2014).

These equations of state and the corresponding adiabatic exponent describe the variation of the nucleon-electron

pressure with respect to the density. As the density declines and the nuclei decay into lighter elements, the neutrinos

become optically thin to processes such as neutrino-neutrino, neutrino-electron, and neutrino-necleon scattering (and
a host of others; see, e.g., Bruenn 1985; Burrows et al. 2006). When the neutrinos are no longer trapped within the

flow, a significant amount of energy is lost from the expanding debris tail (e.g., Sekiguchi et al. 2016; Vincent et al.

2020), which correspondingly reduces the pressure below the isentropic value. Since the width of the tail is governed by

the balance between pressure and self-gravity, the width of the tail is reduced. However, the sound speed still declines
predominantly from the stretching of the tail in the direction of the remnant (see Equation 8), which implies that the

sound crossing time over the width of the tail is reduced as the tail cools from neutrino emission. This reduction in

the sound crossing time implies that the effective γ increases as the tail radiates energy in the form of neutrinos.

We conclude that the effective γ will soften below the nuclear value as the density declines, but will also stiffen

as the material becomes optically thin to neutrinos and energy (and pressure support against self-gravity) is lost.
We experimented with changing the equation of state by modifying the polytropic index of the gas (equal to the

polytropic index of the initial star). We found – consistent with the predictions of Section 2 and with past investigations

(Lee & Ramirez-Ruiz 2007) – that increasing the adiabatic index resulted in more vigorous fragmentation at earlier

times (see also Coughlin et al. 2016b). As we softened the adiabatic index, the fragmentation was less pronounced and
occurred later. We did not perform simulations with an adiabatic index γ < 5/3 to test the prediction that such a

configuration is stable to gravitational fragmentation, though the simulations of Coughlin et al. (2016b), who studied

the structure of debris streams produced from tidal disruption events with a range of γ, found that fragmentation did

not occur for γ < 5/3.
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Finally, we emphasize that the stability analysis, and the condition that γ = 5/3 is the critical adiabatic index that

separates stable from unstable streams, results from an expansion of the fluid equations about the marginally bound

radius. In particular, the spreading of the material in this region causes the sound speed to decline as ∼ 1/Z, whereas

the width of the tail expands subsonically until γ = 5/3, which allows the stream to remain causally connected in the
transverse direction. However, there are higher-order terms (in the quantity ∆z/Z) that enter the fluid equations and

modify the stability criterion at late times once we start to move away from the marginally bound radius. For the

unbound tail, these additional terms further destabilize the stream to self-gravity, as the fluid elements asymptotically

approach constant velocities at late times. In this constant-velocity limit, the sound speed declines only as Z−1/2,

which implies that the unbound segment of the tail is susceptible to gravitational fragmentation until H ∝ Z; this
scaling occurs when γ = 4/3 (see also Section 5.2 of Coughlin et al. 2016a), and demonstrates that the unbound

segment of the tail is asymptotically unstable to fragmentation even in the presence of softer equations of state.

A.4. Resolution

The time at which the linear, gravitational instability reaches the nonlinear regime – and leads to the formation of

knots within the tidal tail – depends on the magnitude of the initial perturbation that seeds the instability. In our

simulation, the dominant source that contributes to the seed density fluctuations is the polytropic density profile of

the initial star. In particular, instead of the density along the axis of the tidal tail being completely flat, the geometric
center of the stream possesses a slightly increased density relative to the extremities. Consequently, there is an initial

density perturbation along the cylinder axis, which gives rise to a collection of simultaneously growing, long-wavelength

perturbations. As we argued above, the growth of these modes is likely responsible for the slow increase in the product

ρZ2 in Figure 4, and their nonlinear couplings give rise to additional power at the maximally growing mode that
eventually emerges.

In addition to the magnitude of the seed perturbation, the time at which the nonlinear growth is reached also

depends on the width of the stream, as it is the dimensionless sound crossing time over this width – being proportional

to the width itself – that characterizes the oscillatory and growing nature of the perturbations. In the limit of infinite

resolution, the width of the tidal tail is determined by the solution to the cylindrical Lane-Emden equation (see Section
2) and is where self-gravity causes the density to equal zero. With a finite number of particles, however, the density

cannot ever equal zero, and the stream width is characterized by a location of finite density and pressure. This finite

pressure is larger for fewer numbers of particles as the pressure smoothing length is larger, which feeds back on the

structure of the tail and correspondingly reduces its width (i.e., the tail becomes effectively pressure confined, which has
a smaller equilibrium width than it would if it were in vacuum). Consequently, the growth timescale of the instability

as calculated with the numerical method is artificially short, and simulations with fewer particles lead to increasingly

shorter timescales in a way that scales linearly with the width of the tail.

To understand how this effect modifies the growth of the instability and the emergence of the most unstable mode,

we re-simulated identical disruptions as shown in Figure 2 with Np = 105 and 106. In all three (i.e., including
Np = 107) simulations we located a clump that collapsed out of the stream that was near the marginally bound

orbit, and computed the average density of the particles constituting that clump. The left panel of Figure 6 shows

the evolution of the average density for Np = 105 (green, dot-dashed), 106 (blue, dashed), and 107 (red, solid) as a

function of time in ms (note that this is on a log-log scale and plotted as a function of time, as compared to Figure
4, which is on a log-linear scale and plotted as a function of dimensionless τ). The dotted, light purple line shows the

expected growth from the maximally growing mode normalized to the values appropriate to this simulation, i.e., this

curve scales as ∼ e0.57×7.0×(t/t0)
1/3

, where 0.57 is the maximum dimensionless growth rate, the factor of 7.0 comes

from the ratio of the dynamical time at the tidal radius to the sound crossing time over the width of the stream at

2.5 ms post-disruption (see Equations 11 and 26), and t0 = 2Z
3/2
0 /(3

√
2GM•) ≃ 1.1 ms, where Z0 ≃ 160 km is the

location of the marginally bound radius at 2.5 ms post-disruption. We see that, as we increase the resolution of the

simulation, the time at which the maximally growing mode appears is extended to later times.

The right panel of this figure illustrates the same three curves, but the time for each simulation is now scaled by the

ratio of the stream width of the respective simulation to the width measured from the Np = 107 run. We find that
this ratio is ∼ 0.61 for Np = 105 and ∼ 0.83 for Np = 106 (i.e., the width of the tail in the Np = 105 run is roughly

0.61 times the width of the tail in the Np = 107 run), and hence the time for the Np = 105 (106) run is scaled by

1/0.61 ∼ 1.65 (1/0.83 ∼ 1.2). This figure demonstrates that, by accounting for the sound-crossing time over the width

of the stream, the simulations converge in the time taken for the most unstable mode to emerge.
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Figure 6. Left: The product ρ/ρ0 × (t/t0)
4/3, where ρ is the average density of the particles that constitute a bound clump

that fragments as a result of the instability by the end of the simulation, and t is the time since pericenter passage. Here
t0 = 2.5 ms and ρ0 is measured at that time (see the top-left panel of Figure 2 for the distribution of the debris at that time).
The solid, dashed, and dot-dashed curves are appropriate to the particle numbers Np shown in the legend, and the dotted
curve is the growth rate predicted for the maximally growing mode; here the instability shown by the dotted curve grows as
∼ exp(0.57 × 7.0(t/t0)

1/3), where 0.57 is the maximum growth rate predicted from the stability analysis, the factor of 7.0
arises from the ratio of the sound crossing time over the cylindrical radius of the tail to the dynamical time at the location
of the marginally bound radius in this simulation (see Equation 11 and 26), and t0 ≃ 1.2 ms is the dynamical time at 2.5 ms
post-disruption. This panel shows that the time at which the fastest-growing mode appears changes as a function of resolution.
Right: The same as the left panel, but here the time for the Np = 105 and Np = 106 particle runs is normalized by the ratio
of the stream width appropriate to each simulation to that of the Np = 107 run. This panel shows that, after accounting for
this effect that normalizes the sound crossing time over the width of the stream, the emergence of the most unstable mode
appears independently of resolution. This panel demonstrates that, while the resolution affects the time at which the instability
manifests itself, the source of the perturbation that seeds the instability is not numerical noise.

In addition to the physical perturbation that arises from the density profile of the original star, there is a second
source that is due to the finite number of particles employed by the numerical method. Specifically, there will always

be an inherent level of noise in the density distribution of the tidal tail at the level of the SPH smoothing length, and

this noise gives rise to an effective perturbation on that length scale. Initially this scale is much smaller than the width

of the stream, and therefore the oscillations induced by these numerical perturbations are stable (i.e., the wavenumber

of the perturbation k satisfies k ≫ kcrit, where kcrit ≃ 1.75; see Figure 4 and Table 2 of Coughlin & Nixon 2020).
However, over timescales much longer than the sound crossing time over the width of the tidal tail, these perturbations

are stretched out and their effective k decreases. Therefore, at some time following the disruption of the star, these

perturbations will start to “leak” into the unstable region of Fourier space, and will non-physically – and in a way

that depends exclusively on the resolution of the simulation – drive the instability at the fastest-growing mode. If the
resolution of the simulation is not high enough, the time taken for the numerical perturbations to leak into the unstable

regime will be shorter than the time taken for the long-wavelength modes seeded by the polytropic density profile to

nonlinearly couple, and the numerical result will not be converged. Coughlin & Nixon (2015) suggested that this noise

was ultimately responsible for driving the fragmentation of the debris streams produced from tidal disruption events.

We can estimate the time at which finite resolution will start to artificially drive the instability: from Equation (3),
the distance between two SPH particles on either side of the marginally bound radius grows approximately as

∆z = ∆z0

(

Z

Z0

)2

. (A1)

If the two particles are originally separated by the SPH smoothing length h, then this separation will grow to the
radius of the cylinder H – and will drive growing perturbations – after the center of mass position reaches

Z

Z0
≃
√

H

h
≃ N1/6

p , (A2)
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where in the last line we used the fact that the interparticle separation is of the order N
1/3
p . Using the fact that

Z ∝ t2/3, if particle noise is seeding the instability, then the time at which the maximally growing mode appears will

scale approximately as N
1/4
p .

For our simulations, this scaling of the time for particle noise to influence the fragmentation implies that each
increase in the particle number by a factor of 10 should result in a delay of the appearance of the fastest-growing

mode by a factor of 101/4 ≃ 1.8. From Figure 6 the time at which the fastest-growing mode appears in the Np = 107

run is roughly ∼ 60 ms, and hence the Np = 106 and Np = 105 runs should – if particle noise seeds the instability –

fragment at times of ∼ 60/1.8 ∼ 33 ms and ∼ 60/1.82 ∼ 19 ms. Comparing these predictions to Figure 6, it is clear

that the fastest-growing mode appears significantly later than it would if the seed perturbations were provided purely
by numerical noise, and that this effect is not dominant in contributing to the gravitational fragmentation observed

in our simulations.

A.5. Variation of simulation parameters

In this paper we focused primarily on the results of a simulation in which a 2M⊙ neutron star, modeled as a γ = 2

polytrope with a radius of 11 km, was disrupted by a 5M⊙ black hole. The pericenter distance of the center of mass
of the star was equal to 3RG, where RG is the gravitational radius of the black hole. This simulation reproduced a

particularly clean set of initial conditions to study the fragmentation of the tidal tails produced from the disruption:

the neutron star was completely disrupted on its initial passage and formed a single, extended tail containing ∼ 10%

of the mass of the star.

The mergers that result in short GRBs clearly have a more varied set of initial conditions than this one case study.
As such, we performed additional simulations in which we varied the pericenter distance of the stellar center of mass,

the mass of the star, the mass of the black hole, the polytropic index of the star and fluid (we tried γ = 1.8 and 3),

the strength of the gravitational field (we replaced the Paczynski-Wiita potential with a Newtonian potential), and –

because the neutron star is likely rotating substantially if the merger happens after the more gradual inspiral of the
binary – the stellar rotation. The most substantial difference generated by varying these parameters was the increased

or reduced survivability of the neutron star during its passage. In particular, many of the simulations we performed

resulted in a partially disrupted star, which then returned to the black hole at least once to be redisrupted (see also

Rosswog & Davies 2002; Rosswog et al. 2004). However, in every case we simulated we recovered the formation of at

least one tidal tail of debris, which subsequently fragmented under its own self-gravity.


