776 research outputs found

    Determination of Uncertainties for Analytically Derived Material Properties to Be Used in Monte Carlo Based Orion Heatshield Sizing

    Get PDF
    Ablative materials are often used for spacecraft heatshields to protect underlying structures from the extreme environments associated with atmospheric reentry. NASA's Orion EM-1 capsule has been designed to use a molded Avcoat material system. In order to determine the required heatshield thickness, a Monte Carlo approach to the sizing process was proposed. To perform the Monte Carlo simulation, statistical uncertainties on all material property input parameters were required. Obtaining these values for measured properties is straightforward, however input parameters that are derived analytically have historically used uncertainties based on engineering judgment. A MATLAB program was created to use laboratory generated thermogravimetric analysis (TGA) data to calculate uncertainties on the Arrhenius parameters for molded Avcoat. Uncertainties associated with the normalized ablation rate and pyrolysis gas enthalpy were also generated using a wrapper script and the ACE code. These uncertainties could then be tied directly to measured values of individual elemental constituents. The resulting uncertainty values will allow for a probabilistic sizing approach on molded Avcoat with a higher level of confidence in the input parameters

    Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations

    Get PDF
    The detection of the binary neutron star GW170817 together with the observation of electromagnetic counterparts across the entire spectrum inaugurated a new era of multi-messenger astronomy. In this study we incorporate wavelength-dependent opacities and emissivities calculated from atomic-structure data enabling us to model both the measured lightcurves and spectra of the electromagnetic transient AT2017gfo. Best-fits of the observational data are obtained by Gaussian Process Regression, which allows us to present posterior samples for the kilonova and source properties connected to GW170817. Incorporating constraints obtained from the gravitational wave signal obtained by the LIGO-Virgo Scientific Collaboration, we present a 90%90\% upper bound on the mass ratio q1.38q \lesssim 1.38 and a lower bound on the tidal deformability of Λ~197\tilde{\Lambda} \gtrsim 197, which rules out sufficiently soft equations of state. Our analysis is a path-finder for more realistic kilonova models and shows how the combination of gravitational wave and electromagnetic measurements allow for stringent constraints on the source parameters and the supranuclear equation of state

    Quality and readability of online patient information for abdominal aortic aneurysms

    Get PDF
    ObjectiveWe assessed the quality and readability of patient information for abdominal aortic aneurysms (AAAs) on the World Wide Web, as accessed from the United Kingdom.MethodsWeb sites returned by a simple Web search using the three largest search engines by market share were objectively and subjectively assessed for quality and readability. The Internet search engines Google, Yahoo!, and Bing were interrogated for the term “abdominal aortic aneurysm” and the first 50 hits screened. Organization type and Health on the Net status were recorded. Each unique site containing AAA information was scored for quality using the University of Michigan Consumer Health Web site Evaluation Checklist by two authors, and readability was calculated using the Flesch Reading Ease (FRE) score. Subjective content assessment was also undertaken.ResultsOf 150 hits, 112 were relevant, with 55 unique sites for assessment. Overall, the FRE score was 39 (range, 29-47) and the Michigan score was 36 (range, 25-56), with good interobserver agreement (rs = 0.83; P = .01). Michigan and FRE scores were poorly correlated (rs = 0.064; P = .6). Sites containing discussion on the merits of endovascular/open repair and the concept of an intervention threshold had the highest Michigan scores (58.5 [50-59.75] vs 28 [13-36.5]; P < .001). Search engine ranking, Health on the Net status, country of origin, and organization type did not affect quality or readability.ConclusionsThe current quality and readability of online patient information for AAAs is poor and requires significant improvement. Clinicians treating patients with AAAs should be aware of the limitations of the online “lay literature.

    GWpy: A Python package for gravitational-wave astrophysics

    Get PDF
    GWpy is a Python software package that provides an intuitive, object-oriented interface through which to access, process, and visualise data from gravitational-wave detectors. GWpy provides a number of new utilities for studying data, as well as an improved user interface for a number of existing tools. The ease-of-use, along with extensive online documentation and examples, has resulted in widespread adoption of GWpy as a basis for Python software development in the international gravitational-wave community

    Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations

    Get PDF
    The detection of the binary neutron star merger GW170817 together with the observation of electromagnetic counterparts across the entire spectrum inaugurated a new era of multimessenger astronomy. In this study, we incorporate wavelength-dependent opacities and emissivities calculated from atomic-structure data enabling us to model both the measured light curves and spectra of the electromagnetic transient AT2017gfo. Best fits of the observational data are obtained by Gaussian Process Regression, which allows us to present posterior samples for the kilonova and source properties connected to GW170817. Incorporating constraints obtained from the gravitational wave signal measured by the LIGO-Virgo Scientific Collaboration, we present a 90 per cent upper bound on the mass ratio q ≲ 1.38 and a lower bound on the tidal deformability of Λ ≳ 197, which rules out sufficiently soft equations of state. Our analysis is a path-finder for more realistic kilonova models and shows how the combination of gravitational wave and electromagnetic measurements allow for stringent constraints on the source parameters and the supranuclear equation of state

    Active Learning for Computationally Efficient Distribution of Binary Evolution Simulations

    Full text link
    Binary stars undergo a variety of interactions and evolutionary phases, critical for predicting and explaining observed properties. Binary population synthesis with full stellar-structure and evolution simulations are computationally expensive requiring a large number of mass-transfer sequences. The recently developed binary population synthesis code POSYDON incorporates grids of MESA binary star simulations which are then interpolated to model large-scale populations of massive binaries. The traditional method of computing a high-density rectilinear grid of simulations is not scalable for higher-dimension grids, accounting for a range of metallicities, rotation, and eccentricity. We present a new active learning algorithm, psy-cris, which uses machine learning in the data-gathering process to adaptively and iteratively select targeted simulations to run, resulting in a custom, high-performance training set. We test psy-cris on a toy problem and find the resulting training sets require fewer simulations for accurate classification and regression than either regular or randomly sampled grids. We further apply psy-cris to the target problem of building a dynamic grid of MESA simulations, and we demonstrate that, even without fine tuning, a simulation set of only 1/4\sim 1/4 the size of a rectilinear grid is sufficient to achieve the same classification accuracy. We anticipate further gains when algorithmic parameters are optimized for the targeted application. We find that optimizing for classification only may lead to performance losses in regression, and vice versa. Lowering the computational cost of producing grids will enable future versions of POSYDON to cover more input parameters while preserving interpolation accuracies.Comment: 20 pages (16 main text), 10 figures, submitted to Ap

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s−46°49′25.151′′. We explored the frequency range of 50–1500 Hz and frequency derivative from 0 to −5×10−9  Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10−25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10−24 for all polarizations and sky location

    The impact of mass-transfer physics on the observable properties of field binary black hole populations

    Get PDF
    We study the impact of mass-transfer physics on the observable properties of binary black hole populations formed through isolated binary evolution. We investigate the impact of mass-accretion efficiency onto compact objects and common-envelope efficiency on the observed distributions of χeff\chi_{eff}, MchirpM_{chirp} and qq. We find that low common envelope efficiency translates to tighter orbits post common envelope and therefore more tidally spun up second-born black holes. However, these systems have short merger timescales and are only marginally detectable by current gravitational-waves detectors as they form and merge at high redshifts (z2z\sim 2), outside current detector horizons. Assuming Eddington-limited accretion efficiency and that the first-born black hole is formed with a negligible spin, we find that all non-zero χeff\chi_{eff} systems in the detectable population can come only from the common envelope channel as the stable mass-transfer channel cannot shrink the orbits enough for efficient tidal spin-up to take place. We find the local rate density (z0.01z\simeq 0.01) for the common envelope channel is in the range 17113 Gpc3yr1\sim 17-113~Gpc^{-3}yr^{-1} considering a range of αCE[0.2,5.0]\alpha_{CE} \in [0.2,5.0] while for the stable mass transfer channel the rate density is 25 Gpc3yr1\sim 25~Gpc^{-3}yr^{-1}. The latter drops by two orders of magnitude if the mass accretion onto the black hole is not Eddington limited because conservative mass transfer does not shrink the orbit as efficiently as non-conservative mass transfer does. Finally, using GWTC-2 events, we constrain the lower bound of branching fraction from other formation channels in the detected population to be 0.2\sim 0.2. Assuming all remaining events to be formed through either stable mass transfer or common envelope channels, we find moderate to strong evidence in favour of models with inefficient common envelopes.Comment: 26 pages, 13 figures, accepted for publication in A&

    Planetary Candidates Observed by Kepler VI: Planet Sample from Q1-Q16 (47 Months)

    Get PDF
    \We present the sixth catalog of Kepler candidate planets based on nearly 4 years of high precision photometry. This catalog builds on the legacy of previous catalogs released by the Kepler project and includes 1493 new Kepler Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these candidates have best fit radii <1.5 R_earth. This brings the total number of KOIs and planet candidates to 7305 and 4173 respectively. We suspect that many of these new candidates at the low signal-to-noise limit may be false alarms created by instrumental noise, and discuss our efforts to identify such objects. We re-evaluate all previously published KOIs with orbital periods of >50 days to provide a consistently vetted sample that can be used to improve planet occurrence rate calculations. We discuss the performance of our planet detection algorithms, and the consistency of our vetting products. The full catalog is publicly available at the NASA Exoplanet Archive.Comment: 18 pages, to be published in the Astrophysical Journal Supplement Serie

    The impact of rheumatoid foot on disability in Colombian patients with rheumatoid arthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alterations in the feet of patients with rheumatoid arthritis (RA) are a cause of disability in this population. The purpose of this research was to evaluate the impact that foot impairment has on the patients' global quality of life (QOL) based on validated scales and its relationship to disease activity.</p> <p>Methods</p> <p>This was a cross-sectional study in which 95 patients with RA were enrolled. A complete physical examination, including a full foot assessment, was done. The Spanish versions of the Health Assessment Questionnaire (HAQ) Disability Index and of the Disease Activity Score (DAS 28) were administered. A logistic regression model was used to analyze data and obtain adjusted odds ratios (AORs).</p> <p>Results</p> <p>Foot deformities were observed in 78 (82%) of the patients; hallux valgus (65%), medial longitudinal arch flattening (42%), claw toe (lesser toes) (39%), dorsiflexion restriction (tibiotalar) (34%), cock-up toe (lesser toes) (25%), and transverse arch flattening (25%) were the most frequent. In the logistic regression analysis (adjusted for age, gender and duration of disease), forefoot movement pain, subtalar movement pain, tibiotalar movement pain and plantarflexion restriction (tibiotalar) were strongly associated with disease activity and disability. The positive squeeze test was significantly associated with disability risk (AOR = 6,3; 95% CI, 1.28–30.96; P = 0,02); hallux valgus, and dorsiflexion restriction (tibiotalar) were associated with disease activity.</p> <p>Conclusion</p> <p>Foot abnormalities are associated with active joint disease and disability in RA. Foot examinations provide complementary information related to the disability as an indirect measurement of quality of life and activity of disease in daily practice.</p
    corecore