
SoftwareX 13 (2021) 100657

A
a

b

c

d

e

t
m
(
m
t
d
o
d
t

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

GWpy: A Python package for gravitational-wave astrophysics
Duncan M. Macleod a,∗, Joseph S. Areeda b, Scott B. Coughlin a,d, Thomas J. Massinger c,
lexander L. Urban e

Cardiff University, Cardiff CF24 3AA, UK
California State University Fullerton, Fullerton, CA 92831, USA
LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208, USA
Louisiana State University, Baton Rouge, LA 70803, USA

a r t i c l e i n f o

Article history:
Received 15 March 2020
Received in revised form 29 October 2020
Accepted 5 January 2021

Keywords:
Gravitational waves
Python
Software

a b s t r a c t

GWpy is a Python software package that provides an intuitive, object-oriented interface through which
to access, process, and visualise data from gravitational-wave detectors. GWpy provides a number of
new utilities for studying data, as well as an improved user interface for a number of existing tools.
The ease-of-use, along with extensive online documentation and examples, has resulted in widespread
adoption of GWpy as a basis for Python software development in the international gravitational-wave
community.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_127
Legal Code License GPL-3.0-or-later
Code versioning system used git
Software code languages, tools, and services used Python

Compilation requirements, operating environments & dependencies astropy ≥ 1.1.1, dqsgedb2, gwdatafind, gwosc ≥ 0.4.0, h5py ≥ 1.3,
ligo-segments ≥ 1.0.0, ligotimegps ≥ 1.2.1, matplotlib ≥ 1.2.0, numpy
≥ 1.7.1, python-dateutil, scipy ≥ 0.12.1, six ≥ 1.5, tqdm ≥ 4.10.0

If available Link to developer documentation/manual https://gwpy.github.io/docs/1.0.0/
Support email for questions See https://github.com/gwpy/gwpy/blob/v1.0.0/CONTRIBUTING.md

1. Motivation and significance

In recent years, the Advanced Laser Interferometer Gravi-
ational-Wave Observatory [1] and Advanced Virgo [2] instru-
ents have made the first detections of gravitational waves

GWs), including the first direct observation of a binary black hole
erger [3], and the first joint GW-electromagnetic (EM) observa-

ion of a binary neutron star [4]. All of the detections made to
ate required vast amounts of computational data analysis, not
nly to extract the signals and their parameters from detector
ata, but also to study the detectors themselves and characterise
heir behaviour.

∗ Corresponding author.
E-mail address: macleoddm@cardiff.ac.uk (Duncan M. Macleod).

The Python programming language [5] has become a critical
component of nearly every facet of computational GW science,
including detector control and automation [6], calibration [7],
detector characterisation [8–10], and data analysis [11–13]. How-
ever, many packages in these areas have been developed inde-
pendently of the others, resulting in mismatching/multiple APIs
for basic operations.

GWpy is a Python package that provides an intuitive, object-
oriented user interface to the basic building blocks for data anal-
ysis. Its purpose is to simplify data input/output (I/O), signal
processing, tabular data filtering, and visualisation. GWpy’s uni-
fied I/O system in particular has greatly simplified access to and
processing of both ‘raw’ instrumental and processed data, as well
as trivialising comparisons of algorithms that previously stored

data in incompatible formats.

ttps://doi.org/10.1016/j.softx.2021.100657
352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100657
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100657&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2020_127
https://gwpy.github.io/docs/1.0.0/
https://github.com/gwpy/gwpy/blob/v1.0.0/CONTRIBUTING.md
mailto:macleoddm@cardiff.ac.uk
https://doi.org/10.1016/j.softx.2021.100657
http://creativecommons.org/licenses/by/4.0/

Duncan M. Macleod, Joseph S. Areeda, Scott B. Coughlin et al. SoftwareX 13 (2021) 100657

T
H

v
s
n
i
d
c
t
d
m

i
d

2

t
s
d
t
v
v

2

b
i
o
t

2

S

a
i
d
a

s
p
s

i
a
s
m

able 1
igh-level class objects in GWpy.
Data structure GWpy class

1D time-domain data gwpy.timeseries.TimeSeries

1D frequency-domain data gwpy.frequencyseries.FrequencySeries

2D time–frequency maps gwpy.spectrogram.Spectrogram

data tables gwpy.table.EventTable

data-quality flags gwpy.segments.DataQualityFlag

Table 2
Common array attributes in GWpy.
Attribute Type Description

name str name of these data
channel Channel source of these data
x0 Quantity scalar X-axis value of starting data point
dx Quantity scalar X-axis step between data points

Since its first alpha release in 2014, GWpy has grown to pro-
ide a software basis for single-person investigations and large-
cale data processing workflows, as well as a number of other
ewly developed software packages. It is now a key component
n the automated data processing environment of LIGO, including
etector performance monitoring [14], low-latency event pro-
essing [15], and parameter estimation [16], and was critical in
he data-quality investigations that validated GW150914, the first
irect detection of gravitational waves from a binary black hole
erger [17].
This article does not present a complete record of all capabil-

ties of GWpy, this is presented online at https://gwpy.github.io/
ocs/stable/.

. Software description

GWpy is implemented in pure Python (i.e. no compiled ex-
ension modules), relying heavily on a number of established
cientific programming packages [18–22] as well as custom GW
ata analysis libraries [23–27]. GWpy is designed to simplify the
ypically complex data analysis tasks that are common across
arious areas of GW research, including I/O, signal processing, and
isualisation.

.1. Software architecture

The GWpy library interface is structured around a small num-
er of class objects that represent the data structures common
n GW data processing, as described in Table 1. Each of these
bjects is furnished with a suite of class and instance methods
hat provide the user with a complete interface for all operations.

.1.1. Array structures
GWpy’s high-level array structures (TimeSeries, Frequency-

eries, and Spectrogram) are implemented in a common hier-
rchy as subclasses of the astropy.units.Quantity object [28],
tself a subclass of numpy.ndarray [29]. This structure provides
irect access to the optimised array functions from NumPy as well
s physical unit handling from Astropy.
For all array classes, GWpy adds metadata attributes that de-

cribe the source of the original data (if appropriate) and the sam-
ling along a specific physical axis (time or frequency, typically),
ee Table 2 for descriptions of each attribute.
The index metadata are typically only stored as the start-

ng index value (x0) and the step size (dx), with a full index
rray (xindex) only evaluated (via a property method) when
pecifically requested by the user. This allows for a minimal
emory overhead of the indexing, whilst not requiring the user

to manually evaluate the index if they need it. Arbitrary index
arrays can be stored by directly setting the xindex attribute. For
two-dimensional arrays, the index metadata for the second axis
are stored in the y0, dy, and yindex attributes

Additionally, the TimeSeriesList and TimeSeriesDict ob-
jects provide additional functionality for collections of time-
domain data.

2.1.2. Tabular data
GWpy’s EventTable class is a subclass of the astropy.

table.Table object, providing customisations specific to the
typical domain use case of storing parameters for groups of time-
domain events. These are typically either transient noise bursts
(glitches) or astrophysical GW events.

2.1.3. Data-quality data
GWpy’s DataQualityFlag class represents the time-domain

metadata associated with GW detector operational state or the
quality of the recorded data. Each DataQualityFlag is comprised
of two segmentlist [26] objects, representing times when the
relevant flag was known and active respectively. For full details
on data-quality flags see [30].

2.2. Software functionalities

As described above, each of the class objects is provided with
all relevant functionality provided as class or instance methods.
In this section we describe the unified I/O and visualisation inter-
faces common to all classes, as well as signal processing methods
typically used to transform time-domain data into other forms.

2.2.1. Unified input/output
Astropy provides an infrastructure for unified input/output

via the astropy.io module that is only applied in that package
to the astropy.table.Table class object. GWpy leverages this
infrastructure to provide common read() and write() methods
for all class objects, enabling reading from and writing to all
common GW file formats, see Table 3 for a reduced list.

2.2.2. Remote data access
GWpy also provides an intuitive remote-data access system

for downloading time-domain data directly into a TimeSeries

object. This is split into two processing methods that serve pub-
lic data from the Gravitational-Wave Open Science Center [32]
(GWOSC) and proprietary data from LIGO data archives respec-
tively.

For public data access, where only GW strain data are typ-
ically available, the user need only supply the interferometer
prefix (e.g. ‘H1’ for LIGO Hanford Observatory), and the start
and stop times of their interval of interest.1 GWpy then uses
the gwosc [25] library to identify the remote URLs of data files
containing that fulfil the request, downloads them to a temporary
location, reads the data, then removes the temporary files.

For proprietary data, where hundreds of thousands of data
channels are available, the user must supply the name of the
channel along with the timing interval. GWpy will then query the
local data archive service (if running directly at a LIGO-operated
computing centre), or one or all of an ordered list of remote data
access services, in either case returning only the requested data
to the user.

1 Timing parameters can be given either as GPS times (float), or as
human-readable UTC date strings.
2

https://gwpy.github.io/docs/stable/
https://gwpy.github.io/docs/stable/
https://gwpy.github.io/docs/stable/

Duncan M. Macleod, Joseph S. Areeda, Scott B. Coughlin et al. SoftwareX 13 (2021) 100657

t
d
t
n
o
t
e
o
a
(
v
m
T
m

2

f
v
i
a
u

3

u

3
L

d
t
(

L
f
d

)

p

d

Table 3
A selection of custom formats implemented in GWpy and accessible through the unified I/O interface
for the listed class object(s).
Format Classes Description

‘gwf’ {Time,Frequency}Series the common GW data frame format [31]
‘hdf5’ {Time,Frequency}Series simple HDF5 datasets
‘hdf5.losc’ {Time,Frequency}Series GWOSC-formated HDF5 datasets [32]
‘ligolw’ EventTable LIGO Light-Weight XML [33]
‘root’ EventTable ROOT [34] trees

2.2.3. Signal processing
Many research applications require transforming the ‘raw’

ime-domain data recorded at an observatory into the frequency
omain, or another format in order to study the features of
he data. The TimeSeries object leverages the SciPy [22] sig-
al processing library scipy.signal to provide instance meth-
ds for time-domain signal processing, including: calculating
he Fourier transform of data (.fft()), estimating the coher-
nce between two series (.coherence()), estimating the Power
r Amplitude Spectral Density (.psd(), .asd()),2 and gener-
ting a Spectrogram of overlapping spectral density estimates
.spectrogram(), .spectrogram2()). Additionally, GWpy pro-
ides an implementation of the Q transform [35], used to generate
ulti-resolution time–frequency maps of data (.qtransform()).
he FrequencySeries object provides an .ifft() instance
ethod to calculate the inverse Fourier transform.

.2.4. Visualisation
Each of the GWpy class objects includes a visualisation inter-

ace supported by Matplotlib [20]. For most objects this is pro-
ided as a plot() instance method that decomposes the object
nto the relevant arrays required by matplotlib, renders those
rrays as required, and returns a formatted matplotlib.fig-

re.Figure. Section 3 demonstrates this functionality.

. Illustrative examples

The following examples are reproduced from the online doc-
mentation at https://gwpy.github.io/docs/1.0.0/examples/.

.1. Example 1: estimating amplitude spectral density from public
IGO data

This example demonstrates downloading public GW event
ata associated with GW150914, estimating the amplitude spec-
ral density of the strain data, and visualising these in a figure
see Fig. 1).

isting 1: Example code to generate an ASD plot with GWpy.
rom gwpy.timeseries import TimeSeries

ata = TimeSeries.fetch_open_data(

"H1",

"2015-09-14 09:50:30",

"2015-09-14 09:51:00",

sample_rate=16384,

)

asd = data.asd(fftlength=4)

plot = asd.plot(

color="gwpy:ligo-hanford",

xscale="log", xlim=(20,4000),

yscale="log", ylim=(2e-24, 5e-21),

ylabel=r"Strain noise [Hz$^{-1/2}$]",

lot.show()

2 For a full description of the supported averaging methods, see the
ocumentation for TimeSeries.psd().

3.2. Example 2: estimating the coherence between two data channels

This example demonstrates accessing proprietary LIGO instru-
mental data and estimating the coherence between an accelerom-
eter signal and the calibrated GW strain data (see Fig. 2).

Listing 2: Example code to estimate the coherence between two
timeseries with GWpy.
from gwpy.timeseries import TimeSeriesDict

data = TimeSeriesDict.get(

[’H1:GDS-CALIB_STRAIN’, ’H1:PEM-CS_ACC_PSL_PERISCOPE_X_DQ’],

1126260017,

1126260617,

)

hoft = data[’H1:GDS-CALIB_STRAIN’]

acc = data[’H1:PEM-CS_ACC_PSL_PERISCOPE_X_DQ’]

coh = hoft.coherence(acc, fftlength=2, overlap=1)

plot = coh.plot(

xlabel=’Frequency [Hz]’, xscale=’log’,

ylabel=’Coherence’, yscale=’linear’, ylim=(0, 1),

)

plot.show()

4. Impact

GWpy is now a widely used library in GW data analysis, with
more than 40 downstream dependants [36] and more than 250
stars [37], including LALInference [38], PyCBC [11], and Bilby [16].

The intuitive object-oriented interface has significantly re-
duced the overhead of repetitive tasks common to the majority
of GW data analysis pipelines, allowing research scientists –
often junior researchers or post-graduate students new to scien-
tific programming – to concentrate on implementing new scien-
tific techniques, rather than reimplementing and validating banal
pre-processing tasks.

GWpy has specifically enabled creation of, or enhancements
to, two widely-used web-based services. LIGO Data Viewer Web
(LDVW) [39] is a browser-based application that enables data vi-
sualisation through simple web forms. This application now uses
GWpy as the backend for the majority of its available products.
The LIGO Summary Pages [14] are an automatically-updating web
view of the performance of the GW network, including ASDs,
ASD spectrograms, sensitive distance trends and transient glitch
maps. This system generates O(1000) figures of merit, updating
every 30 min (on average) for each LIGO observatory, all of which
are generated using GWpy as the backend for data handling and
visualisation.

These two services together have enabled all members of
the the LIGO Scientific Collaboration (LSC) and the Virgo Col-
laboration to see up-to-date information on detector network
performance, and reproduce and generate their own figures of
merit with identical look-and-feel, greatly increasing the com-
parability of data. The ease by which data can be access and
processed, enabled by GWpy, was critical to the validation of
3

https://gwpy.github.io/docs/1.0.0/examples/

Duncan M. Macleod, Joseph S. Areeda, Scott B. Coughlin et al. SoftwareX 13 (2021) 100657

G
s

5

b
p
m
w
d
t
O
c
i

Fig. 1. Output figure for Listing 1.

Fig. 2. Output figure for Listing 2.

W150914 [17], the first detection of gravitational waves, and
ubsequent detections [40,41].

. Conclusion

GWpy is a Python package that provides the basic building
locks for a growing number of GW data analysis workflows. It
rovides a user-friendly, object-oriented interface that trivialises
ulti-format data I/O, signal processing, and visualisation in a
ay that significantly reduces the overhead for researchers when
eveloping scientific analysis software. GWpy has been critical to
he success of Advanced Laser Interferometer Gravitational-Wave
bservatory [1] (aLIGO) by enabling creation and operation of
onsole- and web-based tools that have accelerated data-quality
nvestigations and understanding of GW detector data.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The authors would like to thank all members of the LIGO
Scientific Collaboration and the Virgo collaboration, and the wider
scientific community, for all of the constructive feedback, bug
reports, and feature requests relating to GWpy.

DMM was supported by the European Union Horizon 2020
Framework Programme, UK under grant agreement no. 663380-
CU073.
4

Duncan M. Macleod, Joseph S. Areeda, Scott B. Coughlin et al. SoftwareX 13 (2021) 100657

R
eferences

[1] The LIGO Scientific Collaboration. Advanced LIGO. Classical Quantum
Gravity 2015;32(7):074001.

[2] Acernese F, et al. Advanced Virgo: a second-generation interferometric
gravitational wave detector. Classical Quantum Gravity 2015;32(2):024001.

[3] Abbott BP, et al. Observation of gravitational waves from a binary black
hole merger. Phys Rev Lett 2016;116(6):061102.

[4] Abbott BP, et al. GW170817: Observation of gravitational waves from a
binary neutron star inspiral. Phys Rev Lett 2017;119(16):161101.

[5] The Python Software Foundation, Python Language Reference, http://www.
python.org.

[6] Rollins JG. Distributed state machine supervision for long-baseline
gravitational-wave detectors. Rev Sci Instrum 2016;87(9):094502.

[7] Viets AD, et al. Reconstructing the calibrated strain signal in the advanced
ligo detectors. Classical Quantum Gravity 2018;35(9):095015.

[8] Essick R, et al. Optimizing vetoes for gravitational-wave transient searches.
Classical Quantum Gravity 2013;30(15):155010.

[9] Urban AL, et al. GWDetchar, https://doi.org/10.5281/zenodo.2575786.
[10] Smith JR, et al. Hveto, https://doi.org/10.5281/zenodo.2584615.
[11] Usman SA, et al. The pycbc search for gravitational waves from compact

binary coalescence. Classical Quantum Gravity 2016;33(21):215004.
[12] Messick C, et al. Analysis framework for the prompt discovery of

compact binary mergers in gravitational-wave data. Phys. Rev. D
2017;95(4):042001.

[13] Pitkin M. CWInPy, https://cwinpy.readthedocs.io/.
[14] Macleod DM, Urban A, et al. GWSumm. https://doi.org/10.5281/zenodo.

2647609.
[15] Singer L. GWCelery. https://gw.readthedocs.io/projects/gwcelery/.
[16] Ashton G, et al. Bilby: A user-friendly Bayesian inference library for

gravitational-wave astronomy. Astrophys J Suppl 2019;241(2):27.
[17] Abbott BP, et al. Characterization of transient noise in advanced LIGO rel-

evant to gravitational wave signal GW150914. Classical Quantum Gravity
2016;33(13):134001.

[18] Robitaille TP, et al. Astropy: A community python package for astronomy.
2013.

[19] Collette A, et al. h5py. https://www.h5py.org.
[20] Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng

2007;9(3):90–5. http://dx.doi.org/10.1109/MCSE.2007.55.
[21] Oliphant TE. A guide to NumPy, vol. 1. Trelgol Publishing USA; 2006.
[22] Virtanen P, et al. Scipy 1.0: fundamental algorithms for scientific

computing in python. Nature Methods 2018 2020;17(3):261–72.

[23] Macleod DM. dqsegdb2. https://doi.org/10.5281/zenodo.2559254.
[24] Macleod DM. GWDataFind. https://gwdatafind.readthedocs.io/.
[25] Macleod DM. gwosc. https://doi.org/10.5281/zenodo.1196305.
[26] Cannon K. ligo-segments. https://lscsoft.docs.ligo.org/ligo-segments/.
[27] Wette K. SWIGLAL: Python and octave interfaces to the LALSuite

gravitational-wave data analysis libraries. SoftwareX 2020;12:100634.
[28] Robitaille TP, et al. Astropy: A community Python package for astronomy.

A&A 2013;558:A33.
[29] van der Walt S, Colbert SC, Varoquaux G. The NumPy array: A structure

for efficient numerical computation, Comput Sci Eng, 13(2): 22–30.
[30] Fisher RP, et al. DQSEGDB: A time-interval database for storing

gravitational wave observatory metadata. SoftwareX 2021. in preparation.
[31] LIGO V. Specification of a common data frame format for interferometric

gravitational wave detectors (IGWD) ligo-t970130. 2009, https://dcc.ligo.
org/LIGO-T970130/public.

[32] Trovato A. GWOSC: Gravitational wave open science center. In: Proceed-
ings of the New Era of Multi-Messenger Astrophysics — PoS(Asterics2019).
Trieste, Italy: SISSA Medialab; 2020, p. 082.

[33] Cannon K. python-ligo-lw. https://git.ligo.org/kipp.cannon/python-ligo-
lw/.

[34] Brun R, Rademakers F. ROOT: An object oriented data analysis framework.
In: New Computing Techniques in Physics Research V. Proceedings, 5th
International Workshop, AIHENP ’96, Lausanne, Switzerland, September
2-6, 1996. Nucl Instrum Methods A 1997;389:81–6. http://dx.doi.org/10.
1016/S0168-9002(97)00048-X.

[35] Brown JC. Calculation of a constant q spectral transform. J Acoust Soc Am
1998;89(1):425–34.

[36] GWpy Dependents. https://github.com/gwpy/gwpy/network/dependents.
[37] GWpy Stargazers. https://github.com/gwpy/gwpy/stargazers.
[38] Veitch J, et al. Parameter estimation for compact binaries with ground-

based gravitational-wave observations using the LALInference software
library. Phys. Rev. D 2015;91(4):042003.

[39] Areeda JS, et al. Ligodv-web: Providing easy, secure and universal access to
a large distributed scientific data store for the LIGO scientific collaboration.
A&C 2017;18:27–34.

[40] Abbott BP, et al. Effects of data quality vetoes on a search for compact
binary coalescences in advanced LIGO’s first observing run. Classical
Quantum Gravity 2018;35(6):065010.

[41] Nuttall LK. Characterizing transient noise in the LIGO detectors. Phil Trans
R Soc A 2018;376(2120):20170286.
5

http://refhub.elsevier.com/S2352-7110(21)00002-9/sb1
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb1
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb1
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb2
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb2
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb2
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb3
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb3
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb3
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb4
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb4
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb4
http://www.python.org
http://www.python.org
http://www.python.org
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb6
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb6
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb6
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb7
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb7
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb7
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb8
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb8
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb8
https://doi.org/10.5281/zenodo.2575786
https://doi.org/10.5281/zenodo.2584615
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb11
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb11
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb11
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb12
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb12
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb12
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb12
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb12
https://cwinpy.readthedocs.io/
https://doi.org/10.5281/zenodo.2647609
https://doi.org/10.5281/zenodo.2647609
https://doi.org/10.5281/zenodo.2647609
https://gw.readthedocs.io/projects/gwcelery/
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb16
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb16
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb16
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb17
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb17
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb17
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb17
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb17
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb18
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb18
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb18
https://www.h5py.org
http://dx.doi.org/10.1109/MCSE.2007.55
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb21
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb22
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb22
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb22
https://doi.org/10.5281/zenodo.2559254
https://gwdatafind.readthedocs.io/
https://doi.org/10.5281/zenodo.1196305
https://lscsoft.docs.ligo.org/ligo-segments/
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb27
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb27
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb27
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb28
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb28
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb28
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb30
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb30
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb30
https://dcc.ligo.org/LIGO-T970130/public
https://dcc.ligo.org/LIGO-T970130/public
https://dcc.ligo.org/LIGO-T970130/public
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb32
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb32
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb32
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb32
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb32
https://git.ligo.org/kipp.cannon/python-ligo-lw/
https://git.ligo.org/kipp.cannon/python-ligo-lw/
https://git.ligo.org/kipp.cannon/python-ligo-lw/
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb35
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb35
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb35
https://github.com/gwpy/gwpy/network/dependents
https://github.com/gwpy/gwpy/stargazers
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb38
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb38
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb38
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb38
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb38
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb39
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb39
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb39
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb39
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb39
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb40
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb40
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb40
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb40
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb40
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb41
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb41
http://refhub.elsevier.com/S2352-7110(21)00002-9/sb41

	GWpy: A Python package for gravitational-wave astrophysics
	Motivation and significance
	Software description
	Software architecture
	Array structures
	Tabular data
	Data-quality data

	Software functionalities
	Unified IO
	Remote data access
	Signal processing
	Visualisation

	Illustrative examples
	Example 1: estimating amplitude spectral density from public LIGO data
	Example 2: estimating the coherence between two data channels

	Impact
	Conclusion
	Declaration of competing interest
	Acknowledgements
	References

