90 research outputs found

    Adult pertussis vaccination strategies and their impact on pertussis in the United States: evaluation of routine and targeted (cocoon) strategies

    Get PDF
    A compartmental, age-structured mathematical model was developed and recent US pertussis epidemiology data were used to evaluate the impact on pertussis infection rates of routine and targeted adult immunization strategies. Model simulations predict that the implementation of adolescent immunization only could reverse the current rise in pertussis infection rates but may lead to a resurgence of pertussis in subsequent decades. In contrast, inclusion of a routine adult strategy is likely to lead to sustained control of pertussis. Routine adult vaccination could control the disease even with relatively low coverage rates of 40% for routine vaccination of all adults every 10 years, or 65% for a targeted vaccination of close contacts of newborns completed by one booster dose for all adults. The model also predicts that the optimal age for this booster dose is 40 years. These results support the 2006 American Academy of Immunization Practices' recommendations for adolescent and adult vaccination against pertussis

    European Seafloor Observatory Offers New Possibilities For Deep Sea Study

    Get PDF
    The Geophysical and Oceanographic Station for Abyssal Research (GEOSTAR), an autonomous seafloor observatory that collects measurements benefiting a number of disciplines during missions up to 1 year long, will begin the second phase of its first mission in 2000. The 6-8 month investigation will take place at a depth of 3400 m in the southern Tyrrhenian basin of the southern Tyrrhenian basin of the central Mediterranean. GEOSTAR was funded by the European Community (EC) for 2.4million(U.S.dollars)in1995asapartoftheMarineScienceandTechnologyprogramme(MAST).TheinnovativedeploymentandrecoveryprocedureGEOSTARuseswasderivedfromthe"twomodule"conceptsuccessfullyappliedbyNASAintheApolloandspaceshuttlemissions,whereonemoduleperformstasksfortheother,includingdeployment,switchingonandoff,performingchecksandrecovery.Theobservatorycommunicationsystem,whichtakesadvantageofsatellitetelemetry,andthesimultaneousacquisitionofasetofvariousmeasurementswithauniquetimereferencemakeGEOSTARthefirstfundamentalelementofamultiparameteroceannetwork.GEOSTARsfirstscientificandtechnologicalmission,whichtookplaceinthesummerof1998intheAdriaticSea,verifiedtheperformanceandreliabilityofthesystem.Themissionwasasuccess.providing440hoursofcontinuousseismicmagneticandoceanographicdata.Thjesecondphaseofthemission,whichwasfundedbytheECfor2.4 million (U.S. dollars) in 1995 as a part of the Marine Science and Technology programme (MAST). The innovative deployment and recovery procedure GEOSTAR uses was derived from the "two-module" concept successfully applied by NASA in the Apollo and space shuttle missions, where one module performs tasks for the other, including deployment, switching on and off, performing checks and recovery. The observatory communication system, which takes advantage of satellite telemetry, and the simultaneous acquisition of a set of various measurements with a unique time reference make GEOSTAR the first fundamental element of a multiparameter ocean network. GEOSTAR's first scientific and technological mission, which took place in the summer of 1998 in the Adriatic Sea, verified the performance and reliability of the system. The mission was a success. providing 440 hours of continuous seismic magnetic and oceanographic data. Thje second phase of the mission, which was funded by the EC for 2 million (US dollars), will carry equipment for chemical, biological and isotopic analyses not used in the first phase, which will broaden the data collection effort.Published45, 48-492.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomariniN/A or not JCRreserve

    Single-frame multiparameter platforms for seafloor geophysical and environmental observations: projects and missons from GEOSTAR to ORION

    Get PDF
    The paper presents an overview of recent seafloor long-term single-frame multiparameter platform developed in the framework of the European Commission and Italian projects starting from the GEOSTAR prototype. The main features of the different systems are described as well as the sea missions that led to their validation. The ORION seafloor observatory network recently developed, based on the GEOSTAR-type platforms and engaged in a deep-sea mission at 3300 m w.d. in the Mediterranean Sea, is also describe

    Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a bayesian random-effects model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibodies directed against haemagglutinin, measured by the haemagglutination inhibition (HI) assay are essential to protective immunity against influenza infection. An HI titre of 1:40 is generally accepted to correspond to a 50% reduction in the risk of contracting influenza in a susceptible population, but limited attempts have been made to further quantify the association between HI titre and protective efficacy.</p> <p>Methods</p> <p>We present a model, using a meta-analytical approach, that estimates the level of clinical protection against influenza at any HI titre level. Source data were derived from a systematic literature review that identified 15 studies, representing a total of 5899 adult subjects and 1304 influenza cases with interval-censored information on HI titre. The parameters of the relationship between HI titre and clinical protection were estimated using Bayesian inference with a consideration of random effects and censorship in the available information.</p> <p>Results</p> <p>A significant and positive relationship between HI titre and clinical protection against influenza was observed in all tested models. This relationship was found to be similar irrespective of the type of viral strain (A or B) and the vaccination status of the individuals.</p> <p>Conclusion</p> <p>Although limitations in the data used should not be overlooked, the relationship derived in this analysis provides a means to predict the efficacy of inactivated influenza vaccines when only immunogenicity data are available. This relationship can also be useful for comparing the efficacy of different influenza vaccines based on their immunological profile.</p

    Invasive meningococcal disease epidemiology and control measures: a framework for evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meningococcal disease can have devastating consequences. As new vaccines emerge, it is necessary to assess their impact on public health. In the absence of long-term real world data, modeling the effects of different vaccination strategies is required. Discrete event simulation provides a flexible platform with which to conduct such evaluations.</p> <p>Methods</p> <p>A discrete event simulation of the epidemiology of invasive meningococcal disease was developed to quantify the potential impact of implementing routine vaccination of adolescents in the United States with a quadrivalent conjugate vaccine protecting against serogroups A, C, Y, and W-135. The impact of vaccination is assessed including both the direct effects on individuals vaccinated and the indirect effects resulting from herd immunity. The simulation integrates a variety of epidemiologic and demographic data, with core information on the incidence of invasive meningococcal disease and outbreak frequency derived from data available through the Centers for Disease Control and Prevention. Simulation of the potential indirect benefits of vaccination resulting from herd immunity draw on data from the United Kingdom, where routine vaccination with a conjugate vaccine has been in place for a number of years. Cases of disease are modeled along with their health consequences, as are the occurrence of disease outbreaks.</p> <p>Results</p> <p>When run without a strategy of routine immunization, the simulation accurately predicts the age-specific incidence of invasive meningococcal disease and the site-specific frequency of outbreaks in the Unite States. 2,807 cases are predicted annually, resulting in over 14,000 potential life years lost due to invasive disease. In base case analyses of routine vaccination, life years lost due to infection are reduced by over 45% (to 7,600) when routinely vaccinating adolescents 12 years of age at 70% coverage. Sensitivity analyses indicate that herd immunity plays an important role when this population is targeted for vaccination. While 1,100 cases are avoided annually when herd immunity effects are included, in the absence of any herd immunity, the number of cases avoided with routine vaccination falls to 380 annually. The duration of vaccine protection also strongly influences results.</p> <p>Conclusion</p> <p>In the absence of appropriate real world data on outcomes associated with large-scale vaccination programs, decisions on optimal immunization strategies can be aided by discrete events simulations such as the one described here. Given the importance of herd immunity on outcomes associated with routine vaccination, published estimates of the economic efficiency of routine vaccination with a quadrivalent conjugate vaccine in the United States may have considerably underestimated the benefits associated with a policy of routine immunization of adolescents.</p

    Meta-Analysis of the Immunogenicity and Tolerability of Pandemic Influenza A 2009 (H1N1) Vaccines

    Get PDF
    Background: Although the 2009 (H1N1) influenza pandemic officially ended in August 2010, the virus will probably circulate in future years. Several types of H1N1 vaccines have been tested including various dosages and adjuvants, and meta-analysis is needed to identify the best formulation. Methods: We searched MEDLINE, EMBASE, and nine clinical trial registries to April 2011, in any language for randomized clinical trials (RCTs) on healthy children, adolescents, adults and the elderly. Primary outcome was the seroconversion rate according to hemagglutinination-inhibition (HI); secondary outcomes were adverse events. For the primary outcome, we used head-to-head meta-analysis and multiple-treatments meta-analysis. Results: Eighteen RCTs could be included in all primary analyses, for a total of 76 arms (16,725 subjects). After 2 doses, all 2009 H1N1 split/subunit inactivated vaccines were highly immunogenic and overcome CPMP seroconversion criteria. After 1 dose only, all split/subunit vaccines induced a satisfactory immunogenicity (> = 70%) in adults and adolescents, while only some formulations showed acceptable results for children and elderly (non-adjuvanted at high-doses and oil-in-water adjuvanted vaccines). Vaccines with oil-in-water adjuvants were more immunogenic than both nonadjuvanted and aluminum-adjuvanted vaccines at equal doses and their immunogenicity at doses < = 6 μg (even with as little as 1.875 μg of hemagglutinin antigen) was not significantly lower than that achieved after higher doses. Finally, the rate of serious vaccine-related adverse events was low for all 2009 H1N1 vaccines (3 cases, resolved in 10 days, out of 22826 vaccinated subjects). However, mild to moderate adverse reactions were more (and very) frequent for oil-in-water adjuvanted vaccines. Conclusions: Several one-dose formulations might be valid for future vaccines, but 2 doses may be needed for children, especially if a low-dose non-adjuvanted vaccine is used. Given that 15 RCTs were sponsored by vaccine manufacturers, future trials sponsored by non-industry agencies and comparing vaccines using different types of adjuvants are needed

    Humoral and Cell-Mediated Immunity to Pandemic H1N1 Influenza in a Canadian Cohort One Year Post-Pandemic: Implications for Vaccination

    Get PDF
    We evaluated a cohort of Canadian donors for T cell and antibody responses against influenza A/California/7/2009 (pH1N1) at 8-10 months after the 2nd pandemic wave by flow cytometry and microneutralization assays. Memory CD8 T cell responses to pH1N1 were detectable in 58% (61/105) of donors. These responses were largely due to cross-reactive CD8 T cell epitopes as, for those donors tested, similar recall responses were obtained to A/California 2009 and A/PR8 1934 H1N1 Hviruses. Longitudinal analysis of a single infected individual showed only a small and transient increase in neutralizing antibody levels, but a robust CD8 T cell response that rose rapidly post symptom onset, peaking at 3 weeks, followed by a gradual decline to the baseline levels seen in a seroprevalence cohort post-pandemic. The magnitude of the influenza-specific CD8 T cell memory response at one year post-pandemic was similar in cases and controls as well as in vaccinated and unvaccinated donors, suggesting that any T cell boosting from infection was transient. Pandemic H1-specific antibodies were only detectable in approximately half of vaccinated donors. However, those who were vaccinated within a few months following infection had the highest persisting antibody titers, suggesting that vaccination shortly after influenza infection can boost or sustain antibody levels. For the most part the circulating influenza-specific T cell and serum antibody levels in the population at one year post-pandemic were not different between cases and controls, suggesting that natural infection does not lead to higher long term T cell and antibody responses in donors with pre-existing immunity to influenza. However, based on the responses of one longitudinal donor, it is possible for a small population of pre-existing cross-reactive memory CD8 T cells to expand rapidly following infection and this response may aid in viral clearance and contribute to a lessening of disease severity

    Cost-Effectiveness of Adolescent Pertussis Vaccination for The Netherlands: Using an Individual-Based Dynamic Model

    Get PDF
    BACKGROUND: Despite widespread immunization programs, a clear increase in pertussis incidence is apparent in many developed countries during the last decades. Consequently, additional immunization strategies are considered to reduce the burden of disease. The aim of this study is to design an individual-based stochastic dynamic framework to model pertussis transmission in the population in order to predict the epidemiologic and economic consequences of the implementation of universal booster vaccination programs. Using this framework, we estimate the cost-effectiveness of universal adolescent pertussis booster vaccination at the age of 12 years in the Netherlands. METHODS/PRINCIPAL FINDINGS: We designed a discrete event simulation (DES) model to predict the epidemiological and economic consequences of implementing universal adolescent booster vaccination. We used national age-specific notification data over the period 1996-2000--corrected for underreporting--to calibrate the model assuming a steady state situation. Subsequently, booster vaccination was introduced. Input parameters of the model were derived from literature, national data sources (e.g. costing data, incidence and hospitalization data) and expert opinions. As there is no consensus on the duration of immunity acquired by natural infection, we considered two scenarios for this duration of protection (i.e. 8 and 15 years). In both scenarios, total pertussis incidence decreased as a result of adolescent vaccination. From a societal perspective, the cost-effectiveness was estimated at €4418/QALY (range: 3205-6364 € per QALY) and €6371/QALY (range: 4139-9549 € per QALY) for the 8- and 15-year protection scenarios, respectively. Sensitivity analyses revealed that the outcomes are most sensitive to the quality of life weights used for pertussis disease. CONCLUSIONS/SIGNIFICANCE: To our knowledge we designed the first individual-based dynamic framework to model pertussis transmission in the population. This study indicates that adolescent pertussis vaccination is likely to be a cost-effective intervention for The Netherlands. The model is suited to investigate further pertussis booster vaccination strategies
    corecore