115 research outputs found

    Transforming growth factor-β activation in cell-free extracellular matrix preparations. Commentary

    Get PDF
    Transforming growth factor-β (TGF-β) is an important regulator of many cellular and immunological functions. It is often deposited in extracellular matrices in a latent form. This commentary is to draw attention to the likelihood that preparing cell-free matrices from tissue cultures by high pH buffers, such as ammonium hydroxide, can activate the TGF-β. Therefore, cells subsequently seeded onto such matrices may respond to the presence of active TGF-β in addition to interactions with macromolecular extracellular matrix components

    cDNA Cloning of the Basement Membrane Chondroitin Sulfate Proteoglycan Core Protein, Bamacan: A Five Domain Structure Including Coiled-Coil Motifs

    Get PDF
    Basement membranes contain several proteoglycans, and those bearing heparan sulfate glycosaminoglycans such as perlecan and agrin usually predominate. Most mammalian basement membranes also contain chondroitin sulfate, and a core protein, bamacan, has been partially characterized. We have now obtained cDNA clones encoding the entire bamacan core protein of Mr = 138 kD, which reveal a five domain, head-rod-tail configuration. The head and tail are potentially globular, while the central large rod probably forms coiled-coil structures, with one large central and several very short interruptions. This molecular architecture is novel for an extracellular matrix molecule, but it resembles that of a group of intracellular proteins, including some proposed to stabilize the mitotic chromosome scaffold. We have previously proposed a similar stabilizing role for bamacan in the basement membrane matrix. The protein sequence has low overall homology, apart from very small NH2- and COOH-terminal motifs

    The CMV early enhancer/chicken β actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mouse embryonic stem cells cultured <it>in vitro </it>have the ability to differentiate into cells of the three germ layers as well as germ cells. The differentiation mimics early developmental events, including vasculogenesis and early angiogenesis and several differentiation systems are being used to identify factors that are important during the formation of the vascular system. Embryonic stem cells are difficult to transfect, while downregulation of promoter activity upon selection of stable transfectants has been reported, rendering the study of proteins by overexpression difficult.</p> <p>Results</p> <p>CCE mouse embryonic stem cells were differentiated on collagen type IV for 4–5 days, Flk1<sup>+ </sup>mesodermal cells were sorted and replated either on collagen type IV in the presence of VEGFA to give rise to endothelial cells and smooth muscle cells or in collagen type I gels for the formation of vascular tubes. The activity of the CMV and β-actin promoters was downregulated during selection of stable transfectants and during differentiation to the Flk1 stage, while the CMV immediate enhancer/β-actin promoter in the pCAGIPuro-GFP vector led to 100% of stably transfected undifferentiated and differentiated cells expressing GFP. To further test this system we expressed syndecan-2 and -4 in these cells and demonstrated high levels of transgene expression in both undifferentiated cells and cells differentiated to the Flk1 stage.</p> <p>Conclusion</p> <p>Vectors containing the CAG promoter offer a valuable tool for the long term expression of transgenes during stem cell differentiation towards mesoderm, while the CMV and β-actin promoters lead to very poor transgene expression during this process.</p

    The Phosphorylation and Distribution of Cortactin Downstream of Integrin α9β1 Affects Cancer Cell Behaviour

    Get PDF
    Integrins, a family of heterodimeric adhesion receptors are implicated in cell migration, development and cancer progression. They can adopt conformations that reflect their activation states and thereby impact adhesion strength and migration. Integrins in an intermediate activation state may be optimal for migration and we have shown previously that fully activated integrin α9β1 corresponds with less migratory behaviour in melanoma cells. Here, we aimed to identify components associated with the activation status of α9β1. Using cancer cell lines with naturally occuring high levels of this integrin, activation by α9β1-specific ligands led to upregulation of fibronectin matrix assembly and tyrosine phosphorylation of cortactin on tyrosine 470 (Y470). Specifically, cortactin phosphorylated on Y470, but not Y421, redistributed together with α9β1 to focal adhesions where active β1 integrin also localises, upon integrin activation. This was commensurate with reduced migration. The localisation and phosphorylation of cortactin Y470 was regulated by Yes kinase and PTEN phosphatase. Cortactin levels influenced fibronectin matrix assembly and active β1 integrin on the cell surface, being inversely correlated with migratory behaviour. This study underlines the complex interplay between cortactin and α9β1 integrin that regulates cell-extracellular matrix interactions

    IGF-IR cooperates with ERα to inhibit breast cancer cell aggressiveness by regulating the expression and localisation of ECM molecules

    Get PDF
    IGF-IR is highly associated with the behaviour of breast cancer cells. In ERα-positive breast cancer, IGF-IR is present at high levels. In clinical practice, prolonged treatment with anti-estrogen agents results in resistance to the therapy with activation of alternative signaling pathways. Receptor Tyrosine Kinases, and especially IGF-IR, have crucial roles in these processes. Here, we report a nodal role of IGF-IR in the regulation of ERα-positive breast cancer cell aggressiveness and the regulation of expression levels of several extracellular matrix molecules. In particular, activation of IGF-IR, but not EGFR, in MCF-7 breast cancer cells results in the reduction of specific matrix metalloproteinases and their inhibitors. In contrast, IGF-IR inhibition leads to the depletion by endocytosis of syndecan-4. Global important changes in cell adhesion receptors, which include integrins and syndecan-4 triggered by IGF-IR inhibition, regulate adhesion and invasion. Cell function assays that were performed in MCF-7 cells as well as their ERα-suppressed counterparts indicate that ER status is a major determinant of IGF-IR regulatory role on cell adhesion and invasion. The strong inhibitory role of IGF-IR on breast cancer cells aggressiveness for which E2-ERα signaling pathway seems to be essential, highlights IGF-IR as a major molecular target for novel therapeutic strategies

    Heparan Sulfate Proteoglycans Mediate Interstitial Flow Mechanotransduction Regulating MMP-13 Expression and Cell Motility via FAK-ERK in 3D Collagen

    Get PDF
    Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D) environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP) expression in rat vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS) chains from proteoglycan (PG) core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1) suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13) expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK) also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs) were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction mechanism via HSPG-mediated FAK activation in 3D. This study will be of interest in understanding the flow-related mechanobiology in vascular lesion formation, tissue morphogenesis, cancer cell metastasis, and stem cell differentiation in 3D, and also has implications in tissue engineering

    Prdm5 Regulates Collagen Gene Transcription by Association with RNA Polymerase II in Developing Bone

    Get PDF
    PRDM family members are transcriptional regulators involved in tissue specific differentiation. PRDM5 has been reported to predominantly repress transcription, but a characterization of its molecular functions in a relevant biological context is lacking. We demonstrate here that Prdm5 is highly expressed in developing bones; and, by genome-wide mapping of Prdm5 occupancy in pre-osteoblastic cells, we uncover a novel and unique role for Prdm5 in targeting all mouse collagen genes as well as several SLRP proteoglycan genes. In particular, we show that Prdm5 controls both Collagen I transcription and fibrillogenesis by binding inside the Col1a1 gene body and maintaining RNA polymerase II occupancy. In vivo, Prdm5 loss results in delayed ossification involving a pronounced impairment in the assembly of fibrillar collagens. Collectively, our results define a novel role for Prdm5 in sustaining the transcriptional program necessary to the proper assembly of osteoblastic extracellular matrix

    The James Webb Space Telescope

    Get PDF
    The James Webb Space Telescope (JWST) is a large (6.6m), cold (50K), infrared-optimized space observatory that will be launched early in the next decade. The observatory will have four instruments: a near-infrared camera, a near-infrared multi-object spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 to 5.0 microns, while the mid-infrared instrument will do both imaging and spectroscopy from 5.0 to 29 microns. The JWST science goals are divided into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the early universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.Comment: 96 pages, including 48 figures and 15 tables, accepted by Space Science Review
    • …
    corecore