5 research outputs found

    Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment

    Get PDF
    Whilst the last decades have seen a clear shift in emphasis from managing natural hazards to managing risk, the majority of natural-hazard risk research still focuses on single hazards. Internationally, there are calls for more attention for multi-hazards and multi-risks. Within the European Union (EU), the concepts of multi-hazard and multi-risk assessment and management have taken centre stage in recent years. In this perspective paper, we outline several key developments in multi-(hazard-)risk research in the last decade, with a particular focus on the EU. We present challenges for multi-(hazard-)risk management as outlined in several research projects and papers. We then present a research agenda for addressing these challenges. We argue for an approach that addresses multi-(hazard-)risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards. In this approach, the starting point is a specific sustainability challenge, rather than an individual hazard or sector, and trade-offs and synergies are examined across sectors, regions, and hazards. We argue for in-depth case studies in which various approaches for multi-(hazard-)risk management are co-developed and tested in practice. Finally, we present a new pan-European research project in which our proposed research agenda will be implemented, with the goal of enabling stakeholders to develop forward-looking disaster risk management pathways that assess trade-offs and synergies of various strategies across sectors, hazards, and spatial scales

    Measuring compound flood potential from river discharge and storm surge extremes at the global scale

    Get PDF
    The interaction between physical drivers from oceanographic, hydrological, and meteorological processes in coastal areas can result in compound flooding. Compound flood events, like Cyclone Idai and Hurricane Harvey, have revealed the devastating consequences of the co-occurrence of coastal and river floods. A number of studies have recently investigated the likelihood of compound flooding at the continental scale based on simulated variables of flood drivers, such as storm surge, precipitation, and river discharges. At the global scale, this has only been performed based on observations, thereby excluding a large extent of the global coastline. The purpose of this study is to fill this gap and identify regions with a high compound flooding potential from river discharge and storm surge extremes in river mouths globally. To do so, we use daily time series of river discharge and storm surge from state-of-the-art global models driven with consistent meteorological forcing from reanalysis datasets. We measure the compound flood potential by analysing both variables with respect to their timing, joint statistical dependence, and joint return period. Our analysis indicates many regions that deviate from statistical independence and could not be identified in previous global studies based on observations alone, such as Madagascar, northern Morocco, Vietnam, and Taiwan. We report possible causal mechanisms for the observed spatial patterns based on existing literature. Finally, we provide preliminary insights on the implications of the bivariate dependence behaviour on the flood hazard characterisation using Madagascar as a case study. Our global and local analyses show that the dependence structure between flood drivers can be complex and can significantly impact the joint probability of discharge and storm surge extremes. These emphasise the need to refine global flood risk assessments and emergency planning to account for these potential interactions

    COAST-RP: A global COastal dAtaset of Storm Tide Return Periods

    No full text
    Storm surges that occur along low-lying, densely populated coastlines can leave devastating societal, economical, and ecological impacts. To protect coastal communities from flooding, return periods of storm tides, defined as the combination of the surge and tide, must be accurately evaluated. Here we present storm tide return periods using a novel integration of two modelling techniques. For surges induced by extratropical cyclones, we use a 38-year time series based on the ERA5 climate reanalysis. For surges induced by tropical cyclones, we use synthetic tropical cyclones from the STORM dataset representing 10,000 years under current climate conditions. Tropical and extratropical cyclone surge levels are probabilistically combined with tidal levels, and return periods are computed empirically. The COAST-RP dataset contains storm tide levels representing the 1, 2, 5, 10, 25, 50, 100, 250, 500, and 1000-year return period.</p

    Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries

    Get PDF
    When river and coastal floods coincide, their impacts are often worse than when they occur in isolation; such floods are examples of ā€˜compound eventsā€™. To better understand the impacts of these compound events, we require an improved understanding of the dependence between coastal and river flooding on a global scale. Therefore, in this letter, we: provide the first assessment and mapping of the dependence between observed high sea-levels and high river discharge for deltas and estuaries around the globe; and demonstrate how this dependencemay influence the joint probability of floods exceeding both the design discharge and design sea-level. The research was carried out by analysingthe statistical dependence between observed sea-levels (and skew surge) from the GESLA-2 dataset, and river discharge using gauged data from the Global Runoff Data Centre, for 187 combinations of stations across the globe. Dependence was assessed using Kendallā€™s rank correlation coefficient (ķœ)and copula models. We find significant dependence for skew surge conditional on annual maximum discharge at 22% of the stations studied, and for discharge conditional on annual maximum skew surge at 36% of the stations studied. Allowing a time-lag between the two variables up to 5 days, we find significant dependence for skew surge conditional on annual maximum discharge at 56% of stations, and for discharge conditional on annual maximum skew surge at 54% of stations. Using copula models, we show that the joint exceedance probability of events in which both the design discharge and design sea-level are exceeded can be several magnitudes higher when the dependence is considered, compared to when independence is assumed. We discuss several implications, showing that flood risk assessments in these regions should correctly account for these joint exceedance probabilities.Water Resource

    Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries

    No full text
    When river and coastal floods coincide, their impacts are often worse than when they occur in isolation; such floods are examples of ā€˜compound eventsā€™. To better understand the impacts of these compound events, we require an improved understanding of the dependence between coastal and river flooding on a global scale. Therefore, in this letter, we: provide the first assessment and mapping of the dependence between observed high sea-levels and high river discharge for deltas and estuaries around the globe; and demonstrate how this dependencemay influence the joint probability of floods exceeding both the design discharge and design sea-level. The research was carried out by analysingthe statistical dependence between observed sea-levels (and skew surge) from the GESLA-2 dataset, and river discharge using gauged data from the Global Runoff Data Centre, for 187 combinations of stations across the globe. Dependence was assessed using Kendallā€™s rank correlation coefficient (ķœ)and copula models. We find significant dependence for skew surge conditional on annual maximum discharge at 22% of the stations studied, and for discharge conditional on annual maximum skew surge at 36% of the stations studied. Allowing a time-lag between the two variables up to 5 days, we find significant dependence for skew surge conditional on annual maximum discharge at 56% of stations, and for discharge conditional on annual maximum skew surge at 54% of stations. Using copula models, we show that the joint exceedance probability of events in which both the design discharge and design sea-level are exceeded can be several magnitudes higher when the dependence is considered, compared to when independence is assumed. We discuss several implications, showing that flood risk assessments in these regions should correctly account for these joint exceedance probabilities.Water Resource
    corecore