130 research outputs found

    A French national survey on infiltrating breast cancer

    Get PDF

    Prognostic value of EndoPredict test in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative primary breast cancer screened for the randomized, double-blind, phase III UNIRAD trial

    Get PDF
    Background: The purpose of this study was to evaluate the prognostic value of the multigene EndoPredict test in prospectively collected data of patients screened for the randomized, double-blind, phase III UNIRAD trial, which evaluated the addition of everolimus to adjuvant endocrine therapy in high-risk, hormone receptor-positive, human epidermal growth factor receptor 2 (HER2)-negative early breast cancer. Patients and methods: Patients were classified into low or high risk according to the EPclin score, consisting of a 12-gene molecular score combined with tumor size and nodal status. Association of the EPclin score with disease-free survival (DFS) and distant metastasis-free survival (DMFS) was evaluated using Kaplan–Meier estimates. The independent prognostic added value of EPclin score was tested in a multivariate Cox model after adjusting on tumor characteristics. Results: EndoPredict test results were available for 768 patients: 663 patients classified as EPclin high risk (EPCH) and 105 patients as EPclin low risk (EPCL). Median follow-up was 70 months (range 1-172 months). For the 429 EPCH randomized patients, there was no significant difference in DFS between treatment arms. The 60-month relapse rate for patients in the EPCL and EPCH groups was 0% and 7%, respectively. Hazard ratio (HR) supposing continuous EPclin score was 1.87 [95% confidence interval (CI) 1.4-2.5, P &lt; 0.0001]. This prognostic effect remained significant when assessed in a Cox model adjusting on tumor size, number of positive nodes and tumor grade (HR 1.52, 95% CI 1.09-2.13, P = 0.0141). The 60-month DMFS for patients in the EPCL and EPCH groups was 100% and 94%, respectively (adjusted HR 8.10, 95% CI 1.1-59.1, P &lt; 0.0001). Conclusions: The results confirm the value of EPclin score as an independent prognostic parameter in node-positive, hormone receptor-positive, HER2-negative early breast cancer patients receiving standard adjuvant treatment. EPclin score can be used to identify patients at higher risk of recurrence who may warrant additional systemic treatments.</p

    Respective Prognostic Value of Genomic Grade and Histological Proliferation Markers in Early Stage (pN0) Breast Carcinoma

    Get PDF
    Genomic grade (GG) is a 97-gene signature which improves the accuracy and prognostic value of histological grade (HG) in invasive breast carcinoma. Since most of the genes included in the GG are involved in cell proliferation, we performed a retrospective study to compare the prognostic value of GG, Mitotic Index and Ki67 score.A series of 163 consecutive breast cancers was retained (pT1-2, pN0, pM0, 10-yr follow-up). GG was computed using MapQuant Dx(R).GG was low (GG-1) in 48%, high (GG-3) in 31% and equivocal in 21% of cases. For HG-2 tumors, 50% were classified as GG-1, 18% as GG-3 whereas 31% remained equivocal. In a subgroup of 132 ER+/HER2- tumors GG was the most significant prognostic factor in multivariate Cox regression analysis adjusted for age and tumor size (HR = 5.23, p = 0.02).In a reference comprehensive cancer center setting, compared to histological grade, GG added significant information on cell proliferation in breast cancers. In patients with HG-2 carcinoma, applying the GG to guide the treatment scheme could lead to a reduction in adjuvant therapy prescription. However, based on the results observed and considering (i) the relatively close prognostic values of GG and Ki67, (ii) the reclassification of about 30% of HG-2 tumors as Equivocal GG and (iii) the economical and technical requirements of the MapQuant micro-array GG test, the availability in the near future of a PCR-based Genomic Grade test with improved performances may lead to an introduction in clinical routine of this test for histological grade 2, ER positive, HER2 negative breast carcinoma

    Aspirin-induced nuclear translocation of NFκB and apoptosis in colorectal cancer is independent of p53 status and DNA mismatch repair proficiency

    Get PDF
    Substantial evidence indicates nonsteroidal anti-inflammatory drugs (NSAIDs) protect against colorectal cancer (CRC). However, the molecular basis for this anti-tumour activity has not been fully elucidated. We previously reported that aspirin induces signal-specific IκBα degradation followed by NFκB nuclear translocation in CRC cells, and that this mechanism contributes substantially to aspirin-induced apoptosis. We have also reported the relative specificity of this aspirin-induced NFκB-dependent apoptotic effect for CRC cells, in comparison to other cancer cell types. It is now important to establish whether there is heterogeneity within CRC, with respect to the effects of aspirin on the NFκB pathway and apoptosis. p53 signalling and DNA mismatch repair (MMR) are known to be deranged in CRC and have been reported as potential molecular targets for the anti-tumour activity of NSAIDs. Furthermore, both p53 and MMR dysfunction have been shown to confer resistance to chemotherapeutic agents. Here, we set out to determine the p53 and hMLH1 dependency of the effects of aspirin on NFκB signalling and apoptosis in CRC. We specifically compared the effects of aspirin treatment on cell viability, apoptosis and NFκB signalling in an HCT-116 CRC cell line with the p53 gene homozygously disrupted (HCT-116p53−/−) and an HCT-116 cell line rendered MMR proficient by chromosomal transfer (HCT-116+ch3), to the parental HCT-116 CRC cell line. We found that aspirin treatment induced apoptosis following IκBα degradation, NFκB nuclear translocation and repression of NFκB-driven transcription, irrespective of p53 and DNA MMR status. These findings are relevant for design of both novel chemopreventative agents and chemoprevention trials in CRC

    A genomic and transcriptomic approach for a differential diagnosis between primary and secondary ovarian carcinomas in patients with a previous history of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The distinction between primary and secondary ovarian tumors may be challenging for pathologists. The purpose of the present work was to develop genomic and transcriptomic tools to further refine the pathological diagnosis of ovarian tumors after a previous history of breast cancer.</p> <p>Methods</p> <p>Sixteen paired breast-ovary tumors from patients with a former diagnosis of breast cancer were collected. The genomic profiles of paired tumors were analyzed using the Affymetrix GeneChip<sup>® </sup>Mapping 50 K Xba Array or Genome-Wide Human SNP Array 6.0 (for one pair), and the data were normalized with ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) algorithm or Partek Genomic Suite, respectively. The transcriptome of paired samples was analyzed using Affymetrix GeneChip<sup>® </sup>Human Genome U133 Plus 2.0 Arrays, and the data were normalized with gc-Robust Multi-array Average (gcRMA) algorithm. A hierarchical clustering of these samples was performed, combined with a dataset of well-identified primary and secondary ovarian tumors.</p> <p>Results</p> <p>In 12 of the 16 paired tumors analyzed, the comparison of genomic profiles confirmed the pathological diagnosis of primary ovarian tumor (n = 5) or metastasis of breast cancer (n = 7). Among four cases with uncertain pathological diagnosis, genomic profiles were clearly distinct between the ovarian and breast tumors in two pairs, thus indicating primary ovarian carcinomas, and showed common patterns in the two others, indicating metastases from breast cancer. In all pairs, the result of the transcriptomic analysis was concordant with that of the genomic analysis.</p> <p>Conclusions</p> <p>In patients with ovarian carcinoma and a previous history of breast cancer, SNP array analysis can be used to distinguish primary and secondary ovarian tumors. Transcriptomic analysis may be used when primary breast tissue specimen is not available.</p
    • …
    corecore