6,182 research outputs found
Going nuclear: gene family evolution and vertebrate phylogeny reconciled
Gene duplications have been common throughout vertebrate evolution, introducing paralogy and so complicating phylogenctic inference from nuclear genes. Reconciled trees are one method capable of dealing with paralogy, using the relationship between a gene phylogeny and the phylogeny of the organisms containing those genes to identify gene duplication events. This allows us to infer phylogenies from gene families containing both orthologous and paralogous copies. Vertebrate phylogeny is well understood from morphological and palaeontological data, but studies using mitochondrial sequence data have failed to reproduce this classical view. Reconciled tree analysis of a database of 118 vertebrate gene families supports a largely classical vertebrate phylogeny
Affirmative action and human capital investment: Theory and evidence from a randomized field experiment
Pre-College human capital investment occurs within a competitive environment and depends on market incentives created by Affirmative Action (AA) in college admissions. These policies affect mechanisms for rank-order allocation of college seats, and alter the relative competition between blacks and whites. We present a theory of AA in university admissions, showing how the effects of AA on human capital investment differ by student ability and demographic group. We then conduct a field experiment designed to mimic important aspects of competitive investment prior to the college market. We pay students based on relative performance on a mathematics exam in order to test the incentive effects of AA, and track study efforts on an online mathematics website. Consistent with theory, AA increases average human capital investment and exam performance for the majority of disadvantaged students targeted by the policy, by mitigating so-called "discouragement effects." The experimental evidence suggests that AA can promote greater equality of market outcomes and narrow achievement gaps at the same time
Technical Note: A numerical test-bed for detailed ice nucleation studies in the AIDA cloud simulation chamber
The AIDA (Aerosol Interactions and Dynamics in the Atmosphere) aerosol and cloud chamber of Forschungszentrum Karlsruhe can be used to test the ice forming ability of aerosols. The AIDA chamber is extensively instrumented including pressure, temperature and humidity sensors, and optical particle counters. Expansion cooling using mechanical pumps leads to ice supersaturation conditions and possible ice formation. In order to describe the evolving chamber conditions during an expansion, a parcel model was modified to account for diabatic heat and moisture interactions with the chamber walls. Model results are shown for a series of expansions where the initial chamber temperature ranged from −20°C to −60°C and which used desert dust as ice forming nuclei. During each expansion, the initial formation of ice particles was clearly observed. For the colder expansions there were two clear ice nucleation episodes. <br><br> In order to test the ability of the model to represent the changing chamber conditions and to give confidence in the observations of chamber temperature and humidity, and ice particle concentration and mean size, ice particles were simply added as a function of time so as to reproduce the observations of ice crystal concentration. The time interval and chamber conditions over which ice nucleation occurs is therefore accurately known, and enables the model to be used as a test bed for different representations of ice formation
Geothermal energy in the UK: The life-cycle environmental impacts of electricity production from the United Downs Deep Geothermal Power project
The UK is rich in heat-producing granites, especially in the county of Cornwall, suggesting the potential for energy production with low environmental footprint. The United Downs Deep Geothermal Power (UDDGP) project aims to demonstrate the technical and commercial viability to produce electricity from the Cornish geothermal resource, exploiting the natural permeability of a significant deep structural fracture zone known as the Porthtowan Fault Zone. Drilling of the first well started at the end of 2018, and the plant is expected to be operational by mid-2020. A relevant question is whether deep geothermal energy is truly environmentally benign. This article presents a comprehensive and detailed Life Cycle Assessment study that i) identifies the main life-cycle sources of environmental impacts for the production of electricity in the UDDGP plant; ii) investigates the effects on the environmental impacts of significant uncertainties surrounding the project, such as availability of geothermal fluid and configuration of the power plant, and iii) compares the performance of the UDDGP operation, and by extension of the putative geothermal energy production in the UK, with other key energy sources in the country. The life cycle inventory relies on a combination of site-specific data for wells construction and literature data for above-surface facilities and stimulation techniques. We validated our model by comparing climate change impacts of UDDGP with those reported by other studies on enhanced geothermal systems. Our results show that the greatest portion of environmental impacts originates from the construction phase (primarily due to steel for wells casing and diesel used during drilling), whilst the scenario analysis demonstrates that increasing installed capacity and cogenerating heat and power are the most effective strategies for improving the environmental performance. Our analysis also suggests that the environmental impacts may increase by ∼35% if stimulation techniques are required to increase the geothermal wells productivity. Compared to alternative energy sources, in the category climate change, UDDGP performs better than solar energy and is comparable with wind and nuclear. It is shown that the environmental benefits of geothermal energy are not straightforward and that a number of trade-offs needs to be considered when other impact categories are quantified
Life-cycle Inventory data and impacts on electricity production at the United Downs Deep Geothermal Power project in the UK
This data article supports the research article “Geothermal energy in the UK: the life-cycle environmental impacts of electricity production from the United Downs Deep Geothermal Power project”. The article reports inventory data, primarily on the construction of the geothermal wells, that is not reported in the main article, and the complete, disaggregated numerical values of the life-cycle environmental impacts reported only in part and in graphical form in the research article. The article also includes data supporting comparative analyses between deep geothermal energy and other energy technologies in the UK, and between the impacts of the construction of wells in a deep and conventional power plant
Image-based software solutions for advanced materials processing and characterization
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordNew image-based solutions are being developed for advanced materials processing and characterization, which involve working with and creating high-quality models from scan data (such as MRI, CT, micro-CT…). Techniques involving the reconstruction and analysis of 3D materials data can accurately reconstruct internal structures, even to the nano level, and generate high-quality meshes suitable for design and simulation applications. By looking at key techniques and their applications, it is possible to better understand the wider impact and benefits of image-based modelling for industry when working with advanced materials
Plate-impact loading of cellular structures formed by selective laser melting
Porous materials are of great interest because of improved energy absorption over their solid counterparts. Their properties, however, have been difficult to optimize. Additive manufacturing has emerged as a potential technique to closely define the structure and properties of porous components, i.e. density, strut width and pore size; however, the behaviour of these materials at very high impact energies remains largely unexplored. We describe an initial study of the dynamic compression response of lattice materials fabricated through additive manufacturing. Lattices consisting of an array of intersecting stainless steel rods were fabricated into discs using selective laser melting. The resulting discs were impacted against solid stainless steel targets at velocities ranging from 300 to 700 m s-1 using a gas gun. Continuum CTH simulations were performed to identify key features in the measured wave profiles, while 3D simulations, in which the individual cells were modelled, revealed details of microscale deformation during collapse of the lattice structure. The validated computer models have been used to provide an understanding of the deformation processes in the cellular samples. The study supports the optimization of cellular structures for application as energy absorbers. © 2014 IOP Publishing Ltd
Magnetic Linear Birefringence Measurements Using Pulsed Fields
In this paper we present the realization of further steps towards the
measurement of the magnetic birefringence of the vacuum using pulsed fields.
After describing our experiment, we report the calibration of our apparatus
using nitrogen gas and we discuss the precision of our measurement giving a
detailed error budget. Our best present vacuum upper limit is Dn < 5.0x10^(-20)
T^-2 per 4 ms acquisition time. We finally discuss the improvements necessary
to reach our final goal.Comment: submitted to Phys. Rev.
Mesoscale simulations of the November 25-26 and December 5-6 cirrus cases using the RAMS model
The Regional Atmospheric Modeling System (RAMS), developed at Colorado State University, was used during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) 2 (13 Nov. through 6 Dec. 1991) to provide real time forecasts of cirrus clouds. Forecasts were run once a day, initializing with the 0000 UTC dataset provided by NOAA (Forecast Systems Laboratory (FSL) Mesoscale Analysis and Prediction System (MAPS)). In order to obtain better agreement with observations, a second set of simulations were done for the FIRE 2 cases that occurred on 25-26 Nov. and 5-6 Dec. In this set of simulations, a more complex radiation scheme was used, the Chen/Cotton radiation scheme, along with the nucleation of ice occurring at ice supersaturations as opposed to nucleation occurring at water supersaturations that was done in the actual forecast version. The runs using these more complex schemes took longer wall clock time (7-9 hours for the actual forecasts as compared to 12-14 hrs for the runs using the more complex schemes) however, the final results of the simulations were definitely improved upon. Comparisons between these two sets of simulations are given. Now underway are simulations of these cases using a closed analytical solution for the auto-conversion of ice from a pristine ice class (sizes less than about 50 microns in effective diameter) to a snow class (effective diameters on the order of several hundred microns). This solution is employed along with a new scheme for the nucleation of ice crystals due to Meyers et al and Demott et al. The scheme is derived assuming complete gamma distributions for both the pristine and snow classes. The time rate of change of the number concentration and mass mixing-ratio of each distribution is found by calculating either the flux of crystals that grow beyond a certain critical diameter by vapor deposition in an ice supersaturated regime or by calculating the flux of crystals that evaporate to sizes below that same critical effective diameter
- …