4,072 research outputs found

    Rhodium Pyrazolate Complexes as Potential CVD Precursors

    Get PDF
    Reaction of 3,5-(CF3)(2)PzLi with [Rh(mu-Cl)(eta(2)-C2H4)(2)](2) or [Rh(mu-Cl)(PMe3)(2)](2) in Et2O gave the dinuclear complexes [Rh(eta(2)-C2H4)(2)(mu-3,5-(CF3)(2)-Pz)](2) (1) and [Rh-2(mu-Cl)(mu-3,5-(CF3)(2)-Pz) (PMe3)(4)] (2) respectively (3,5-(CF3)(2)Pz = bis-trifluoromethyl pyrazolate). Reaction of PMe3 with [Rh(COD)(mu-3,5-(CF3)(2)-Pz)](2) in toluene gave [Rh(3,5-(CF3)(2)-Pz)(PMe3)(3)] (3). Reaction of 1 and 3 in toluene (1 : 4) gave moderate yields of the dinuclear complex [Rh(PMe3)(2)(mu-3,5-(CF3)(2)-Pz)](2) (4). Reaction of 3,5-(CF3)(2)PzLi with [Rh(PMe3)(4)]Cl in Et2O gave the ionic complex [Rh(PMe3)(4)][3,5-(CF3)(2)-Pz] (5). Two of the complexes, 1 and 3, were studied for use as CVD precursors. Polycrystalline thin films of rhodium (fcc-Rh) and metastable-amorphous films of rhodium phosphide (Rh2P) were grown from 1 and 3 respectively at 170 and 130 degrees C, 0.3 mmHg in a hot wall reactor using Ar as the carrier gas (5 cc min(-1)). Thin films of amorphous rhodium and rhodium phosphide (Rh2P) were grown from 1 and 3 at 170 and 130 degrees C respectively at 0.3 mmHg in a hot wall reactor using H-2 as the carrier gas (7 cc min(-1)).Welch Foundation F-816Petroleum Research Fund 47014-ACSNSF 0741973Chemistr

    Patches in a side-by-side configuration: a description of the flow and deposition fields

    Get PDF
    In the last few decades, a lot of research attention has been paid to flow-vegetation interactions. Starting with the description of the flow field around uniform macrophyte stands, research has evolved more recently to the description of flow fields around individual, distinct patches. However, in the field, vegetation patches almost never occur in isolation. As such, patches will influence each other during their development and interacting, complex flow fields can be expected. In this study, two emergent patches of the same diameter (D = 22 cm) and a solid volume fraction of 10% were placed in a side-by-side configuration in a lab flume. The patches were built as an array of wooden cylinders, and the distance between the patches (gap width Delta) was varied between Delta = 0 and 14 cm. Flow measurements were performed by a 3D Vectrino Velocimeter (Nortek AS) at mid-depth of the flow. Deposition experiments of suspended solids were performed for selected gap widths. Directly behind each patch, the wake evolved in a manner identical to that of a single, isolated patch. On the centerline between the patches, the maximum velocity U-max was found to be independent of the gap width Delta. However, the length over which this maximum velocity persists, the potential core L-j, increased linearly as the gap width increased. After the merging of the wakes, the centerline velocity reaches a minimum value U-min. The minimum centerline velocity decreased in magnitude as the gap width decreased. The velocity pattern within the wake is reflected in the deposition patterns. An erosion zone occurs on the centerline between the patches, where the velocity is elevated. Deposition occurs in the low velocity zones directly behind each patch and also downstream of the patches, along the centerline between the patches at the point of local velocity minimum. This downstream deposition zone, a result of the interaction of neighbouring patch wakes, may facilitate the establishment of new vegetation, which may eventually inhibit flow between the upstream patches and facilitate patch merger

    Plate-impact loading of cellular structures formed by selective laser melting

    No full text
    Porous materials are of great interest because of improved energy absorption over their solid counterparts. Their properties, however, have been difficult to optimize. Additive manufacturing has emerged as a potential technique to closely define the structure and properties of porous components, i.e. density, strut width and pore size; however, the behaviour of these materials at very high impact energies remains largely unexplored. We describe an initial study of the dynamic compression response of lattice materials fabricated through additive manufacturing. Lattices consisting of an array of intersecting stainless steel rods were fabricated into discs using selective laser melting. The resulting discs were impacted against solid stainless steel targets at velocities ranging from 300 to 700 m s-1 using a gas gun. Continuum CTH simulations were performed to identify key features in the measured wave profiles, while 3D simulations, in which the individual cells were modelled, revealed details of microscale deformation during collapse of the lattice structure. The validated computer models have been used to provide an understanding of the deformation processes in the cellular samples. The study supports the optimization of cellular structures for application as energy absorbers. © 2014 IOP Publishing Ltd

    Microphase separation in Pr0.67Ca0.33MnO3 by small angle neutron scattering

    Full text link
    We have evidenced by small angle neutron scattering at low temperature the coexistence of ferromagnetism (F) and antiferromagnetism (AF) in Pr0.67Ca0.33MnO3. The results are compared to those obtained in Pr0.80Ca0.20MnO3 and Pr0.63Ca0.37MnO3, which are F and AF respectively. Quantitative analysis shows that the small angle scattering is not due to a mesoscopic mixing but to a nanoscopic electronic and magnetic ''red cabbage'' structure, in which the ferromagnetic phase exists in form of thin layers in the AF matrix (stripes or 2D ''sheets'').Comment: 4 figure

    The VLA Low-frequency Sky Survey

    Full text link
    The Very Large Array (VLA) Low-frequency Sky Survey (VLSS) has imaged 95% of the 3*pi sr of sky north of declination = -30 degrees at a frequency of 74 MHz (4 meter wavelength). The resolution is 80" (FWHM) throughout, and the typical RMS noise level is ~0.1 Jy/beam. The typical point-source detection limit is 0.7 Jy/beam and so far nearly 70,000 sources have been catalogued. This survey used the 74 MHz system added to the VLA in 1998. It required new imaging algorithms to remove the large ionospheric distortions at this very low frequency throughout the entire ~11.9 degree field of view. This paper describes the observation and data reduction methods used for the VLSS and presents the survey images and source catalog. All of the calibrated images and the source catalog are available online (http://lwa.nrl.navy.mil/VLSS) for use by the astronomical community.Comment: 53 pages, including 3 tables and 15 figures. Has been accepted for publication in the Astronomical Journa
    • …
    corecore