6,575 research outputs found

    The giant radio galaxy 8C0821+695 and its environment

    Get PDF
    We present new VLA and Effelsberg observations of the radio galaxy 8C0821+695. We have obtained detailed images in total intensity and polarization of this 2 Mpc sized giant. The magnetic field has a configuration predominantly parallel to the source main axis. We observe Faraday rotation at low frequencies, most probably produced by an ionized medium external to the radio source. The spectral index distribution is that typical of FR II radio galaxies, with spectral indices gradually steepening from the source extremes towards the core. Modeling the spectrum in the lobes using standard synchrotron loss models yields the spectral age of the source and the mean velocity of the jet-head with respect to the lobe material. The existence of a possible backflow in the lobe is considered to relate spectral with dynamical determinations of the age and the velocity with respect to the external medium. Through a very simple model, we obtain a physical characterization of the jets and the external medium in which the radio galaxy expands. The results in 8C0821+695 are consistent with a relativistic jet nourishing the lobes which expand in a hot, low density halo. We infer a deceleration of the source expansion velocity which we explain through a progressive increase in the hot-spot size.Comment: 11 pages; 8 figures; accepted in A&

    The Broad Line Radio Galaxy J2114+820

    Full text link
    In the frame of the study of a new sample of large angular size radio galaxies selected from the NRAO VLA Sky Survey, we have made radio observations of J2114+820, a low power radio galaxy with an angular size of 6'. Its radio structure basically consists of a prominent core, a jet directed in north-west direction and two extended S-shaped lobes. We have also observed the optical counterpart of J2114+820, a bright elliptical galaxy with a strong unresolved central component. The optical spectrum shows broad emission lines. This fact, together with its low radio power and FR-I type morphology, renders J2114+820 a non-trivial object from the point of view of the current unification schemes of radio loud active galactic nuclei.Comment: 6 pages, 5 figures. To appear in the proceedings of EVN/JIVE Symposium No. 4, New Astronomy Reviews (eds. Garrett et al.

    Lipodystrophy syndrome in HIV-infected children on HAART

    Get PDF
    Lipodystrophy syndrome (LD) is common in HIV-infected children, particularly those taking didanosine, stavudine or zidovudine. Lipo-atrophy in particular causes major stigmatisation and interferes with adherence. In addition, LD may have significant long-term health consequences, particularly  cardiovascular. Since the stigmatising fat distribution changes of LD are largely permanent, the focus of management remains on early detection and arresting progression. Practical guidelines for surveillance and avoidance of LD in routine clinical practice are presented. The diagnosis of LD is described and therapeutic options are reviewed. The most important therapeutic intervention is to switch the most likely offending antiretroviral to a non-LD-inducing agent as soon as LD is recognised. Typically, when lipo-atrophy or lipohypertrophy is diagnosed the thymidine nucleoside reverse transcriptase inhibitor (NRTI) is switched to a non-thymidine agent such as abacavir (or tenofovir in adults).Where dyslipidaemia is predominant, a dietician review is helpful, and the clinician may consider switching to a protease inhibitor-sparing regimen or to atazanavir

    B2 1144+35: A Giant Low Power Radio Galaxy with Superluminal Motion

    Get PDF
    We report on centimeter VLA and VLBI observations of the giant, low power radio galaxy 1144+35. These observations are sensitive to structures on scales from less than 1 parsec to greater than 1 megaparsec. Diffuse steep spectrum lobes on the megaparsec scale are consistent with an age of ∼\sim 108^8 years. On the parsec scale, a complex jet component is seen to move away from the center of activity with an apparent velocity 2.7 h50−1^{-1}_{50} c. It shows a central spine -- shear layer morphology. A faint parsec scale counterjet is detected and an intrinsic jet velocity of 0.95 c and angle to the line of sight of 25∘^\circ are derived, consistent with an intrinsically symmetric ejection. The central spine in the parsec scale jet is expected to move at a higher velocity and a Lorentz factor γ\gamma ∼\sim 15 has been estimated near the core.The age of this inner VLBI structure is ∼\sim 300 years. Assuming a constant angle to the line-of-sight, the jet velocity is found to decrease from 0.95 c at 20 mas (32 pc on the plane of the sky) to 0.02 c at 15 arcsec (24 kpc on the plane of the sky). These findings lend credence to the claim that (1) even the jets of low power radio galaxies start out relativistic; and (2) these jets are decelerated to subrelativistic velocities by the time they reach kiloparsec scales.Comment: 21 pages, 16 separated figures. A version with figures and table in the text is available at: ftp://terra.bo.cnr.it/papers/journals - it is a ps gzipped file, named giovannini_apr99.gz (792kb) - ApJ in pres

    Radio Continuum Emission from the Magnetar SGR J1745-2900: Interaction with Gas Orbiting Sgr A*

    Full text link
    We present radio continuum light curves of the magnetar SGR J1745−-2900 and Sgr A* obtained with multi-frequency, multi-epoch Very Large Array observations between 2012 and 2014. During this period, a powerful X-ray outburst from SGR J1745−-2900 occurred on 2013-04-24. Enhanced radio emission is delayed with respect to the X-ray peak by about seven months. In addition, the flux density of the emission from the magnetar fluctuates by a factor of 2 to 4 at frequencies between 21 and 41 GHz and its spectral index varies erratically. Here we argue that the excess fluctuating emission from the magnetar arises from the interaction of a shock generated from the X-ray outburst with the orbiting ionized gas at the Galactic center. In this picture, variable synchrotron emission is produced by ram pressure variations due to inhomogeneities in the dense ionized medium of the Sgr A West bar. The pulsar with its high transverse velocity is moving through a highly blue-shifted ionized medium. This implies that the magnetar is at a projected distance of ∼0.1\sim0.1 pc from Sgr A* and that the orbiting ionized gas is partially or largely responsible for a large rotation measure detected toward the magnetar. Despite the variability of Sgr A* expected to be induced by the passage of the G2 cloud, monitoring data shows a constant flux density and spectral index during this periodComment: 12 pages, 3 figures, ApJL (in press

    Surface roughness and thermal conductivity of semiconductor nanowires: going below the Casimir limit

    Full text link
    By explicitly considering surface roughness at the atomic level, we quantitatively show that the thermal conductivity of Si nanowires can be lower than Casimir's classical limit. However, this violation only occurs for deep surface degradation. For shallow surface roughness, the Casimir formula is shown to yield a good approximation to the phonon mean free paths and conductivity, even for nanowire diameters as thin as 2.22 nm. Our exact treatment of roughness scattering is in stark contrast with a previously proposed perturbative approach, which is found to overpredict scattering rates by an order of magnitude. The obtained results suggest that a complete theoretical understanding of some previously published experimental results is still lacking.Comment: 11 pages, 4 figure
    • …
    corecore