4,926 research outputs found

    Studies of satellite support to weather modification in the western US region

    Get PDF
    The applications of meteorological satellite data to both summer and winter weather modification programs are addressed. Appraisals of the capability of satellites to assess seedability, to provide real-time operational support, and to assist in the post-experiment analysis of a seeding experiment led to the incorporation of satellite observing systems as a major component in the Bureau of Reclamations weather modification activities. Satellite observations are an integral part of the South Park Area cumulus experiment (SPACE) which aims to formulate a quantitative hypothesis for enhancing precipitation from orographically induced summertime mesoscale convective systems (orogenic mesoscale systems). Progress is reported in using satellite observations to assist in classifying the important mesoscale systems, and in defining their frequency and coverage, and potential area of effect. Satellite studies of severe storms are also covered

    VLBI Observations of a Complete Sample of Radio Galaxies V. 3C346 and 4C31.04: two Unusual CSS Sources

    Get PDF
    We present observations at 1.7 and 8.4 GHz of two Compact Steep Spectrum (CSS) sources from a complete sample of low-intermediate power radio galaxies. 3C346 shows an asymmetric structure with a one-sided ``jet'' and ``hot spot''. Present observations suggest that the classification of this source as a CSS is inappropriate, and that it is a common radio galaxy at a small angle to the line of sight. Its properties are in agreement with the predictions of unified schemes models. 4C31.04 shows more complex structure with the possibility of a centrally located flat spectrum core in between two close lobes. We suggest that this source could be a low redshift Compact Symmetric Object.Comment: 15 pages, LATEX, uuenconde ps figures To be published in the Astrophysical Journal, October 20th issu

    The Broad Line Radio Galaxy J2114+820

    Full text link
    In the frame of the study of a new sample of large angular size radio galaxies selected from the NRAO VLA Sky Survey, we have made radio observations of J2114+820, a low power radio galaxy with an angular size of 6'. Its radio structure basically consists of a prominent core, a jet directed in north-west direction and two extended S-shaped lobes. We have also observed the optical counterpart of J2114+820, a bright elliptical galaxy with a strong unresolved central component. The optical spectrum shows broad emission lines. This fact, together with its low radio power and FR-I type morphology, renders J2114+820 a non-trivial object from the point of view of the current unification schemes of radio loud active galactic nuclei.Comment: 6 pages, 5 figures. To appear in the proceedings of EVN/JIVE Symposium No. 4, New Astronomy Reviews (eds. Garrett et al.

    B2 1144+35: A Giant Low Power Radio Galaxy with Superluminal Motion

    Get PDF
    We report on centimeter VLA and VLBI observations of the giant, low power radio galaxy 1144+35. These observations are sensitive to structures on scales from less than 1 parsec to greater than 1 megaparsec. Diffuse steep spectrum lobes on the megaparsec scale are consistent with an age of ∼\sim 108^8 years. On the parsec scale, a complex jet component is seen to move away from the center of activity with an apparent velocity 2.7 h50−1^{-1}_{50} c. It shows a central spine -- shear layer morphology. A faint parsec scale counterjet is detected and an intrinsic jet velocity of 0.95 c and angle to the line of sight of 25∘^\circ are derived, consistent with an intrinsically symmetric ejection. The central spine in the parsec scale jet is expected to move at a higher velocity and a Lorentz factor γ\gamma ∼\sim 15 has been estimated near the core.The age of this inner VLBI structure is ∼\sim 300 years. Assuming a constant angle to the line-of-sight, the jet velocity is found to decrease from 0.95 c at 20 mas (32 pc on the plane of the sky) to 0.02 c at 15 arcsec (24 kpc on the plane of the sky). These findings lend credence to the claim that (1) even the jets of low power radio galaxies start out relativistic; and (2) these jets are decelerated to subrelativistic velocities by the time they reach kiloparsec scales.Comment: 21 pages, 16 separated figures. A version with figures and table in the text is available at: ftp://terra.bo.cnr.it/papers/journals - it is a ps gzipped file, named giovannini_apr99.gz (792kb) - ApJ in pres
    • …
    corecore