636 research outputs found

    For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace

    Get PDF
    Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation. The AFR concept proposes a practical means in which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control. The paper discusses the context and motivation for implementing self-separation in US domestic airspace. It presents a historical perspective on separation, the proposed way forward in AFR, the rationale behind mixed operations, and the expected benefits of AFR for the airspace user community

    Airborne Trajectory Management (ABTM): A Blueprint for Greater Autonomy in Air Traffic Management

    Get PDF
    The aviation users of the National Airspace System (NAS) - the airlines, General Aviation (GA), the military and, most recently, operators of Unmanned Aircraft Systems (UAS) - are constrained in their operations by the design of the current paradigm for air traffic control (ATC). Some of these constraints include ATC preferred routes, departure fix restrictions and airspace ground delay programs. As a result, most flights cannot operate on their most efficient business trajectories and a great many flights are delayed even getting into the air, which imposes a significant challenge to maintaining efficient flight and network operations. Rather than accepting ever more sophisticated scheduling solutions to accommodate the existing constraints in the airspace, a series of increasingly capable airborne technologies, integrated with planned improvements in the ground system through the Federal Aviation Administration (FAA) Next Generation Air Traffic Management System (NextGen) programs, could produce much greater operational flexibility for flight path optimization by the aviation system users. These capabilities, described in research coming out of NASA's Aeronautics Research Mission Directorate, can maintain or improve operational safety while taking advantage of air and ground NextGen technologies in novel ways. The underlying premise is that the nation's physical airspace is still abundant and underused, and that the delays and inefficient flight operations resulting from artificial structure in airspace use and procedural constraints on those operations may not be necessary for safe and efficient flight. This article is not an indictment of today's NAS or the people who run it. Indeed, it is an exceptional achievement that Air Traffic Management (ATM) - the complex human/machine conglomeration of communications, navigation and surveillance equipment and the rules and procedures for controlling traffic in the airspace - has both the capacity and enables the degree of efficiency in air travel that it does. But it is also true that sixty years of the "radar religion" (i.e., reliance on radar-based command and control) has produced several generations of ATM system operators and researchers who believe that introducing automation within the existing functional structure of ATM is the only way to "modernize" the system. Even NextGen, which began as a proposal for "transformational" change in the way ATC is performed, has morphed over the last decade and a half to become just the inclusion of Global Positioning System (GPS) for navigation, Automatic Dependent Surveillance Broadcast (ADS-B) for surveillance, and Data Communications (Data Comm) for communications, while still operating in rigidly structured airspace with human controllers being responsible for separation and traffic flow management (TFM) within defined sectors of airspace, using the same horizontal separation standards that have been in use since raw primary radar was introduced in the 1950s. No system as massive as the current NAS ATM can be replaced with a better system while simultaneously meeting the transportation and other aviation needs of the nation. A new generation of more flexible operations must emerge and yet coexist in harmony with the current operation (i.e., share the same airspace without segregation), thereby enabling a long-term transformation to take place in the way increasing numbers of flights are handled. Market forces will be the ultimate driver of this transformation, and investment realities mandate that real benefits must accrue to the first operators to adopt these new capabilities. In fact, the kinds of missions envisioned in the emerging world of UAS operations, unachievable under conventional ATM, demand that this transformation take place. Airborne Trajectory Management (ABTM) is proposed as a series of transformational steps leading to vastly increased flexibility in flight operations and capacity in the airspace to accommodate many varied airspace uses while improving safety. As will be described, ABTM enables the gradual emergence of a new paradigm for user-based trajectory management in ATM that brings tangible benefits to equipped operators at every step while leveraging the air and ground investments of NextGen. There are five steps in this ABTM transformation.1 NASA has extensively studied the first and last of these steps, and a roadmap of increasing capabilities and benefits is proposed for bridging between these operational concepts

    Autonomous Flight Rules - A Concept for Self-Separation in U.S. Domestic Airspace

    Get PDF
    Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control

    Preliminary Assessment of Operational Hazards and Safety Requirements for Airborne Trajectory Management (ABTM) Roadmap Applications

    Get PDF
    A set of five developmental steps building from the NASA TASAR (Traffic Aware Strategic Aircrew Requests) concept are described, each providing incrementally more efficiency and capacity benefits to airspace system users and service providers, culminating in a Full Airborne Trajectory Management capability. For each of these steps, the incremental Operational Hazards and Safety Requirements are identified for later use in future formal safety assessments intended to lead to certification and operational approval of the equipment and the associated procedures. Two established safety assessment methodologies that are compliant with the FAA's Safety Management System were used leading to Failure Effects Classifications (FEC) for each of the steps. The most likely FEC for the first three steps, Basic TASAR, Digital TASAR, and 4D TASAR, is "No effect". For step four, Strategic Airborne Trajectory Management, the likely FEC is "Minor". For Full Airborne Trajectory Management (Step 5), the most likely FEC is "Major"

    Endoscopists attitudes on the publication of "quality" data for endoscopic procedures: a cross-sectional survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whilst the public now have access to mortality & morbidity data for cardiothoracic surgeons, such "quality" data for endoscopy are not generally available. We studied endoscopists' attitudes to and the practicality of this data being published.</p> <p>Methods</p> <p>We sent a questionnaire to all consultant gastrointestinal (GI) surgeons, physicians and medical GI specialist registrars in the Northern region who currently perform GI endoscopic procedures (n = 132). We recorded endoscopist demographics, experience and current data collection practice. We also assessed the acceptability and utility of nine items describing endoscopic "quality" (e.g. mortality, complication & completion rates).</p> <p>Results</p> <p>103 (78%) doctors responded of whom 79 were consultants (77%). 61 (59%) respondents were physicians. 77 (75%) collect any "quality" data. The most frequently collected item was colonoscopic completion rate. Data were most commonly collected for appraisal, audit or clinical governance. The majority of doctors (54%) kept these data only available to themselves, and just one allowed the public to access this. The most acceptable data item was annual number of endoscopies and the least was crude upper GI bleeding mortality. Surgeons rated information less acceptable and less useful than physicians. Acceptability and utility scores were not related to gender, length of experience or current activity levels. Only two respondents thought all items totally unacceptable and useless.</p> <p>Conclusion</p> <p>The majority of endoscopists currently collect "quality" data for their practice although these are not widely available. The endoscopists in this study consider the publication of their outcome data to be "fairly unacceptable/not very useful" to "neutral" (score 2–3). If these data were made available to patients, consideration must be given to both its value and its acceptability.</p

    Amniotic Fluid Glucose Concentration: A Marker for Infection in Preterm Labor and Preterm Premature Rupture of Membranes

    Get PDF
    Amniotic fluid Gram stain and culture have been utilized as laboratory tests of microbial invasion of the amniotic cavity. The Gram stain of amniotic fluid has a low sensitivity in the detection of clinical infection or microbial invasion of the amniotic cavity, and amniotic fluid culture results are not immediately available for management decisions. Glucose concentration is used to diagnose infection in other sites such as cerebrospinal fluid

    Remarkable preservation of brain tissues in an Early Cretaceous iguanodontian dinosaur

    Get PDF
    It has become accepted in recent years that the fossil record can preserve labile tissues. We report here the highly detailed mineralization of soft tissues associated with a naturally occurring brain endocast of an iguanodontian dinosaur found in c. 133 Ma fluvial sediments of the Wealden at Bexhill, Sussex, UK. Moulding of the braincase wall and the mineral replacement of the adjacent brain tissues by phosphates and carbonates allowed the direct examination of petrified brain tissues. Scanning electron microscopy (SEM) imaging and computed tomography (CT) scanning revealed preservation of the tough membranes (meninges) that enveloped and supported the brain proper. Collagen strands of the meningeal layers were preserved in collophane. The blood vessels, also preserved in collophane, were either lined by, or infilled with, microcrystalline siderite. The meninges were preserved in the hindbrain region and exhibit structural similarities with those of living archosaurs. Greater definition of the forebrain (cerebrum) than the hindbrain (cerebellar and medullary regions) is consistent with the anatomical and implied behavioural complexity previously described in iguanodontian-grade ornithopods. However, we caution that the observed proximity of probable cortical layers to the braincase walls probably resulted from the settling of brain tissues against the roof of the braincase after inversion of the skull during decay and burial

    How to Compute Worst-Case Execution Time by Optimization Modulo Theory and a Clever Encoding of Program Semantics

    No full text
    International audienceIn systems with hard real-time constraints, it is necessary to compute upper bounds on the worst-case execution time (WCET) of programs; the closer the bound to the real WCET, the better. This is especially the case of synchronous reactive control loops with a fixed clock; the WCET of the loop body must not exceed the clock period. We compute the WCET (or at least a close upper bound thereof) as the solution of an optimization modulo theory problem that takes into account the semantics of the program, in contrast to other methods that compute the longest path whether or not it is feasible according to these semantics. Optimization modulo theory extends satisfiability modulo theory (SMT) to maximization problems. Immediate encodings of WCET problems into SMT yield formulas intractable for all current production-grade solvers; this is inherent to the DPLL(T) approach to SMT implemented in these solvers. By conjoining some appropriate "cuts" to these formulas, we considerably reduce the computation time of the SMT-solver. We experimented our approach on a variety of control programs, using the OTAWA analyzer both as baseline and as underlying microarchitectural analysis for our analysis, and show notable improvement on the WCET bound on a variety of benchmarks and control programs
    corecore