876 research outputs found
An evaluation of carbon offset supplementation options for beef production systems on coastal speargrass in central Queensland, Australia
In 2014, the Australian Government implemented the Emissions Reduction Fund to offer incentives for businesses to reduce greenhouse gas (GHG) emissions by following approved methods. Beef cattle businesses in northern Australia can participate by applying the 'reducing GHG emissions by feeding nitrates to beef cattle' methodology and the 'beef cattle herd management' methods. The nitrate (NO3) method requires that each baseline area must demonstrate a history of urea use. Projects earn Australian carbon credit units (ACCU) for reducing enteric methane emissions by substituting NO3 for urea at the same amount of fed nitrogen. NO3 must be fed in the form of a lick block because most operations do not have labour or equipment to manage daily supplementation. NO3 concentrations, after a 2-week adaptation period, must not exceed 50 g NO3/adult animal equivalent per day or 7 g NO3/kg dry matter intake per day to reduce the risk of NO3 toxicity. There is also a 'beef cattle herd management' method, approved in 2015, that covers activities that improve the herd emission intensity (emissions per unit of product sold) through change in the diet or management. The present study was conducted to compare the required ACCU or supplement prices for a 2% return on capital when feeding a low or high supplement concentration to breeding stock of either (1) urea, (2) three different forms of NO3 or (3) cottonseed meal (CSM), at N concentrations equivalent to 25 or 50 g urea/animal equivalent, to fasten steer entry to a feedlot (backgrounding), in a typical breeder herd on the coastal speargrass land types in central Queensland. Monte Carlo simulations were run using the software @risk, with probability functions used for (1) urea, NO3 and CSM prices, (2) GHG mitigation, (3) livestock prices and (4) carbon price. Increasing the weight of steers at a set turnoff month by feeding CSM was found to be the most cost-effective option, with or without including the offset income. The required ACCU prices for a 2% return on capital were an order of magnitude higher than were indicative carbon prices in 2015 for the three forms of NO3. The likely costs of participating in ERF projects would reduce the return on capital for all mitigation options. © CSIRO 2016
Probing the depths of the India-Asia collision: U-Th-Pb monazite chronology of granulites from NW Bhutan
[1] Rocks metamorphosed to high temperatures and/or high pressures are rare across the Himalayan orogen, where peak metamorphic conditions recorded in the exposed metamorphic core, the Greater Himalayan Sequence (GHS), are generally at middle to upper amphibolite facies. However, mafic garnet-clinopyroxene assemblages exposed at the highest structural levels in Bhutan, eastern Himalaya, preserve patchy textural evidence for early eclogite-facies conditions, overprinted by granulite-facies conditions. Monazite hosted within the leucosome of neighboring granulite-facies orthopyroxene-bearing felsic gneiss yields LA-MC-ICP-MS U-Th-Pb ages of 13.9 ± 0.3 Ma. Monazite associated with sillimanite-grade metamorphism in granulite-hosting migmatitic gneisses yields U-Th-Pb rim ages between 15.4 ± 0.8 Ma and 13.4 ± 0.5 Ma. Monazite associated with sillimanite-grade metamorphism in gneiss at structurally lower levels yields U-Pb rim ages of 21–17 Ma. These data are consistent with Miocene exhumation of GHS material from a variety of crustal depths at different times along the Himalayan orogen. We propose that these granulitized eclogites represent lower crustal material exhumed by tectonic forcing over an incoming Indian crustal ramp and that they formed in a different tectonic regime to the ultrahigh-pressure eclogites in the western Himalaya. Their formation and exhumation in the Miocene therefore do not require diachroneity in the timing of the initial India-Asia collision
Measurement of charge and light yields for Xe 127 L -shell electron captures in liquid xenon
Dark matter searches using dual-phase xenon time-projection chambers (LXe-TPCs) rely on their ability to reject background electron recoils (ERs) while searching for signal-like nuclear recoils (NRs). ER response is typically calibrated using β-decay sources, such as tritium, but these calibrations do not characterize events accompanied by an atomic vacancy, as in solar neutrino scatters off inner-shell electrons. Such events lead to emission of x rays and Auger electrons, resulting in higher electron-ion recombination and thus a more NR-like response than inferred from β-decay calibration. We present a cross-calibration of tritium β-decays and Xe127 electron-capture decays (which produce inner-shell vacancies) in a small-scale LXe-TPC and give the most precise measurements to date of light and charge yields for the Xe127 L-shell electron-capture in liquid xenon. We observe a 6.9σ (9.2σ) discrepancy in the L-shell capture response relative to tritium β decays, measured at a drift field of 363±14 V/cm (258±13 V/cm), when compared to simulations tuned to reproduce the correct β-decay response. In dark matter searches, use of a background model that neglects this effect leads to overcoverage (higher limits) for background-only multi-kiloton-year exposures, but at a level much less than the 1-σ experiment-to-experiment variation of the 90% C.L. upper limit on the interaction rate of a 50 GeV/c2 dark matter particle
Extreme alpha-clustering in the 18O nucleus
The structure of the 18O nucleus at excitation energies above the alpha decay
threshold was studied using 14C+alpha resonance elastic scattering. A number of
states with large alpha reduced widths have been observed, indicating that the
alpha-cluster degree of freedom plays an important role in this N not equal Z
nucleus. However, the alpha-cluster structure of this nucleus is very different
from the relatively simple pattern of strong alpha-cluster quasi-rotational
bands in the neighboring 16O and 20Ne nuclei. A 0+ state with an alpha reduced
width exceeding the single particle limit was identified at an excitation
energy of 9.9+/-0.3 MeV. We discuss evidence that states of this kind are
common in light nuclei and give possible explanations of this feature.Comment: 4 pages, 2 figures, 1 table. Resubmission with minor changes for
clarity, including removal of one figur
Population of bound excited states in intermediate-energy fragmentation reactions
Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a
wide range of reaction mechanisms, ranging from direct reactions to statistical
processes. We examine this transition by measuring the relative population of
excited states in several sd-shell nuclei produced by fragmentation with the
number of removed nucleons ranging from two to sixteen. The two-nucleon removal
is consistent with a non-dissipative process whereas the removal of more than
five nucleons appears to be mainly statistical.Comment: 5 pages, 6 figure
Euniwell: Maximising Academic And Social Outcomes In Engineering Education
The ERASMUS+ European University for Well-Being (EUniWell) alliance’s mission aims to resolve the paradox of Europeans’ relative prosperity against the global security and sustainability challenge. “Maximising Academic and Social Outcomes in Engineering Education” is a project which interprets this contradiction for engineering educators; how to best teach non-technical skills to ensure engineers make the utmost contribution to societal wellbeing? Appreciably, the social outcome for the person who becomes an engineer is positive because the profession is relatively well-paid. Therefore, engineering education is good for social mobility providing the learning environment narrows attainment gaps between disadvantaged and mainstream cohorts. Accordingly, our strategy is to bring together the expertise of the British, French, Italian and Swedish faculties to transfer best practice for professional, business and sustainability skill teaching, while contrasting how their disadvantaged cohorts present. The project has two primary objectives: To understand how partners differ in terms of skill teaching, and how students from disadvantaged backgrounds are accommodated. The paper describes the background and rationale of the project, and its research design and methodology. Although the project is still in progress and data collection is still underway, this paper provides insights and perspectives for engineering educators looking to design similar collaborations to share best practice, while considering engineering identities and their underlying competencies
Shell structure at N=28 near the dripline: spectroscopy of Si, P and S
Measurements of the N=28 isotones 42Si, 43P and 44S using one- and two-proton
knockout reactions from the radioactive beam nuclei 44S and 46Ar are reported.
The knockout reaction cross sections for populating 42Si and 43P and a 184 keV
gamma-ray observed in 43P establish that the d_{3/2} and s_{1/2} proton orbits
are nearly degenerate in these nuclei and that there is a substantial Z=14
subshell closure separating these two orbits from the d_{5/2} orbit. The
increase in the inclusive two-proton knockout cross section from 42Si to 44S
demonstrates the importance of the availability of valence protons for
determining the cross section. New calculations of the two-proton knockout
reactions that include diffractive effects are presented. In addition, it is
proposed that a search for the d_{5/2} proton strength in 43P via a higher
statistics one-proton knockout experiment could help determine the size of the
Z=14 closure.Comment: Phys. Rev. C, in pres
- …