10 research outputs found

    Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation

    Get PDF
    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation

    Ultra performance liquid chromatography-mass spectrometric determination of the site specificity of modification of β-casein by glucose and methylglyoxal

    No full text
    Modification of protein by carbonyl compounds under in vitro physiological conditions is site-directed. There are few reports of the site specificity of glycation of proteins using heating conditions of relevance to food processing. The aim of this study was to determine the site specificity of modification of β-casein (βCN) by glucose and methylglyoxal (MGO). βCN (1.33 M, 3.2%) was heated with either glucose (1.345 M, 4.6%) or MGO (1 mM) at 95°C for up to 4 h. Tryptic digests were prepared and analysed by ultra performance liquid chromatography electrospray ionisation mass spectrometry (UPLC-ES/MS). The sites of formation of the Amadori product, N ε -(fructosyl)lysine (FL), and the advanced glycation end-products, N ε -(carboxymethyl)lysine (CML), MGO-derived dihydroxyimidazolidine (MG-DH) and MGO-derived hydroimidazolone (MG-HI), were located. FL and CML were detected at K107 and K176 residues in βCN/glucose incubations. Indigenous N ε -(lactulosyl)lysine was detected at K107 only. MG-DH and MG-HI were detected at R202 and possibly R183 residues in both βCN/glucose and βCN/MGO incubations. Glycation of βCN by glucose and MGO resulted in similar site specificity for MG-DH and MG-HI formation

    Mass spectrometric determination of early and advanced glycation in biology

    Get PDF
    Protein glycation in biological systems occurs predominantly on lysine, arginine and Nterminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1 – 5 mol percent of proteins. These are glucose-derived fructosamine on lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and Nε-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LCMS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them – amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have important applications in biology, ageing and translational medicine – particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically. Future use in health screening, disease diagnosis and therapeutic monitoring, and drug and functional food development is expected. A protocol for high resolution mass spectrometry proteomics of glycated proteins is given
    corecore