4,190 research outputs found

    Identity is About us: Leadership Lessons Learned During an Accreditation Journey

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156444/2/jls21694_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156444/1/jls21694.pd

    The Environment of M85 optical transient 2006-1: constraints on the progenitor age and mass

    Get PDF
    M85 optical transient 2006-1 (M85 OT 2006-1) is the most luminous member of the small family of V838 Mon-like objects, whose nature is still a mystery. This event took place in the Virgo cluster of galaxies and peaked at an absolute magnitude of I~-13. Here we present Hubble Space Telescope images of M85 OT 2006-1 and its environment, taken before and after the eruption, along with a spectrum of the host galaxy at the transient location. We find that the progenitor of M85 OT 2006-1 was not associated with any star forming region. The g and z-band absolute magnitudes of the progenitor were fainter than about -4 and -6 mag, respectively. Therefore, we can set a lower limit of ~50 Myr on the age of the youngest stars at the location of the progenitor that corresponds to a mass of <7 solar mass. Previously published line indices suggest that M85 has a mean stellar age of 1.6+/-0.3 Gyr. If this mean age is representative of the progenitor of M85 OT 2006-1, then we can further constrain its mass to be less than 2 solar mass. We compare the energetics and mass limit derived for the M85 OT 2006-1 progenitor with those expected from a simple model of violent stellar mergers. Combined with further modeling, these new clues may ultimately reveal the true nature of these puzzling events.Comment: 4 pages, accepted to Ap

    Infrared Excess in the Be Star Delta Scorpii

    Full text link
    We present infrared photometric observations of the Be binary system delta Scorpii obtained in 2006. The J,H and K magnitudes are the same within the errors compared to observations taken 10 months earlier. We derive the infrared excess from the observation and compare this to the color excess predicted by a radiative equilibrium model of the primary star and its circumstellar disk. We use a non-LTE computational code to model the gaseous envelope concentrated in the star's equatorial plane and calculate the expected spectral energy distribution and Halpha emission profile of the star with its circumstellar disk. Using the observed infrared excess of delta Sco, as well as Halpha spectroscopy bracketing the IR observations in time, we place constraints on the radial density distribution in the circumstellar disk. Because the disk exhibits variability in its density distribution, this work will be helpful in understanding its dynamics.Comment: 12 pages, 14 figures, to be published in PASP May 200

    Robust avoidance of edge-localized modes alongside gradient formation in the negative triangularity tokamak edge

    Full text link
    In a series of high performance diverted discharges on DIII-D, we demonstrate that strong negative triangularity (NT) shaping robustly suppresses all edge-localized mode (ELM) activity over a wide range of plasma conditions: ⟨n⟩=0.1−1.5×1020\langle n\rangle=0.1-1.5\times10^{20}m−3^{-3}, Paux=0−15P_\mathrm{aux}=0-15MW and ∣Bt∣=1−2.2|B_\mathrm{t}|=1-2.2T, corresponding to Ploss/PLH08∼8P_\mathrm{loss}/P_\mathrm{LH08}\sim8. The full dataset is consistent with the theoretical prediction that magnetic shear in the NT edge inhibits access to ELMing H-mode regimes; all experimental pressure profiles are found to be at or below the infinite-nn ballooning stability limit. Importantly, we also report enhanced edge pressure gradients at strong NT that are significantly steeper than in traditional ELM-free L-mode plasmas and provide significant promise for NT reactor integration.Comment: 5 pages, 5 figure

    Universal Power Law in the Noise from a Crumpled Elastic Sheet

    Full text link
    Using high-resolution digital recordings, we study the crackling sound emitted from crumpled sheets of mylar as they are strained. These sheets possess many of the qualitative features of traditional disordered systems including frustration and discrete memory. The sound can be resolved into discrete clicks, emitted during rapid changes in the rough conformation of the sheet. Observed click energies range over six orders of magnitude. The measured energy autocorrelation function for the sound is consistent with a stretched exponential C(t) ~ exp(-(t/T)^{b}) with b = .35. The probability distribution of click energies has a power law regime p(E) ~ E^{-a} where a = 1. We find the same power law for a variety of sheet sizes and materials, suggesting that this p(E) is universal.Comment: 5 pages (revtex), 10 uuencoded postscript figures appended, html version at http://rainbow.uchicago.edu/~krame

    Moving Wigner Glasses and Smectics: Dynamics of Disordered Wigner Crystals

    Full text link
    We examine the dynamics of driven classical Wigner solids interacting with quenched disorder from charged impurities. For strong disorder, the initial motion is plastic -- in the form of crossing winding channels. For increasing drive, the disordered Wigner glass can reorder to a moving Wigner smectic -- with the electrons moving in non-crossing 1D channels. These different dynamic phases can be related to the conduction noise and I(V) curves. For strong disorder, we show criticality in the voltage onset just above depinning. We also obtain the dynamic phase diagram for driven Wigner solids and prove that there is a finite threshold for transverse sliding, recently found experimentally.Comment: 4 pages, 4 postscript figure

    The infrared imaging spectrograph (IRIS) for TMT: the science case

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument being designed for the Thirty Meter Telescope (TMT). IRIS is a combination of an imager that will cover a 16.4" field of view at the diffraction limit of TMT (4 mas sampling), and an integral field unit spectrograph that will sample objects at 4-50 mas scales. IRIS will open up new areas of observational parameter space, allowing major progress in diverse fields of astronomy. We present the science case and resulting requirements for the performance of IRIS. Ultimately, the spectrograph will enable very well-resolved and sensitive studies of the kinematics and internal chemical abundances of high-redshift galaxies, shedding light on many scenarios for the evolution of galaxies at early times. With unprecedented imaging and spectroscopy of exoplanets, IRIS will allow detailed exploration of a range of planetary systems that are inaccessible with current technology. By revealing details about resolved stellar populations in nearby galaxies, it will directly probe the formation of systems like our own Milky Way. Because it will be possible to directly characterize the stellar initial mass function in many environments and in galaxies outside of the the Milky Way, IRIS will enable a greater understanding of whether stars form differently in diverse conditions. IRIS will reveal detailed kinematics in the centers of low-mass galaxies, allowing a test of black hole formation scenarios. Finally, it will revolutionize the characterization of reionization and the first galaxies to form in the universe.Comment: to appear in Proc. SPIE 773

    The Next Generation Virgo Cluster Survey. VII. The intrinsic shapes of low-luminosity galaxies in the core of the Virgo cluster, and a comparison with the Local Group

    Full text link
    (Abridged) We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo cluster using deep imaging obtained as part of the NGVS. We build a sample of nearly 300 red-sequence cluster members in the yet unexplored −14<Mg<−8-14 < M_{g} < -8 magnitude range. The observed distribution of apparent axis ratios is then fit by families of triaxial models with normally-distributed intrinsic ellipticities and triaxialities. We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity E=0.43, and a mean triaxiality T=0.16. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. We additionally attempt a study of the intrinsic shapes of Local Group satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity E=0.51, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. We finally compare the intrinsic shapes of NGVS low-mass galaxies with samples of more massive quiescent systems, and with field, star-forming galaxies of similar luminosities. We find that the intrinsic flattening in this low-luminosity regime is almost independent of the environment in which the galaxy resides--but there is a hint that objects may be slightly rounder in denser environments. The comparable flattening distributions of low-luminosity galaxies that have experienced very different degrees of environmental effects suggests that internal processes are the main drivers of galaxy structure at low masses--with external mechanisms playing a secondary role.Comment: Accepted to ApJ. 18 pages, 12 figure
    • …
    corecore