879 research outputs found

    Impact of climate induced glacial melting on coastal marine systems in the Western Antarctic Peninsula region

    Get PDF
    IMCOAST is an international research program that features a multidisciplinary approach involving geo and biological sciences, field investigations, remote sensing and modeling and knowledge into the hydrographical and biological history of the marine coastal ecosystems of the Western Antarctic Peninsula region

    Entanglement between a qubit and the environment in the spin-boson model

    Get PDF
    The quantitative description of the quantum entanglement between a qubit and its environment is considered. Specifically, for the ground state of the spin-boson model, the entropy of entanglement of the spin is calculated as a function of α\alpha, the strength of the ohmic coupling to the environment, and ϵ\epsilon, the level asymmetry. This is done by a numerical renormalization group treatment of the related anisotropic Kondo model. For ϵ=0\epsilon=0, the entanglement increases monotonically with α\alpha, until it becomes maximal for αlim1\alpha \lim 1^-. For fixed ϵ>0\epsilon>0, the entanglement is a maximum as a function of α\alpha for a value, α=αM<1\alpha = \alpha_M < 1.Comment: 4 pages, 3 figures. Shortened version restricted to groundstate entanglemen

    Magnetotransport through a strongly interacting quantum dot

    Full text link
    We study the effect of a magnetic field on the conductance through a strongly interacting quantum dot by using the finite temperature extension of Wilson's numerical renormalization group method to dynamical quantities. The quantum dot has one active level for transport and is modelled by an Anderson impurity attached to left and right electron reservoirs. Detailed predictions are made for the linear conductance and the spin-resolved conductance as a function of gate voltage, temperature and magnetic field strength. A strongly coupled quantum dot in a magnetic field acts as a spin filter which can be tuned by varying the gate voltage. The largest spin-filtering effect is found in the range of gate voltages corresponding to the mixed valence regime of the Anderson impurity model.Comment: Revised version, to appear in PRB, 4 pages, 4 figure

    Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys

    Full text link
    The effect of a magnetic field on the spectral density of a S=1/2\rm{S=1/2} Kondo impurity is investigated at zero and finite temperatures by using Wilson's numerical renormalization group method. A splitting of the total spectral density is found for fields larger than a critical value Hc(T=0)0.5TKH_{c}(T=0)\approx 0.5 T_{K}, where TKT_{K} is the Kondo scale. The splitting correlates with a peak in the magnetoresistivity of dilute magnetic alloys which we calculate and compare with the experiments on CexLa1xAl2,x=0.0063\rm{Ce_{x}La_{1-x}Al_{2}}, x=0.0063. The linear magnetoconductance of quantum dots exhibiting the Kondo effect is also calculated.Comment: 4 pages, 4 eps figure

    Real-Time-RG Analysis of the Dynamics of the Spin-Boson Model

    Full text link
    Using a real-time renormalization group method we determine the complete dynamics of the spin-boson model with ohmic dissipation for coupling strengths α0.10.2\alpha\lesssim 0.1-0.2. We calculate the relaxation and dephasing time, the static susceptibility and correlation functions. Our results are consistent with quantum Monte Carlo simulations and the Shiba relation. We present for the first time reliable results for finite cutoff and finite bias in a regime where perturbation theory in α\alpha or in tunneling breaks down. Furthermore, an unambigious comparism to results from the Kondo model is achieved.Comment: 4 pages, 5 figures, 1 tabl

    Transport Coefficients of the Anderson Model via the Numerical Renormalization Group

    Full text link
    The transport coefficients of the Anderson model are calculated by extending Wilson's NRG method to finite temperature Green's functions. Accurate results for the frequency and temperature dependence of the single--particle spectral densities and transport time τ(ω,T)\tau(\omega,T) are obtained and used to extract the temperature dependence of the transport coefficients in the strong correlation limit. The low temperature anomalies in the resistivity, ρ(T)\rho(T), thermopower, S(T)S(T), thermal conductivity κ(T)\kappa(T) and Hall coefficient, RH(T)R_{H}(T), are discussed. All quantities exhibit the expected Fermi liquid behaviour at low temperature with power law dependecies on T/TKT/T_{K} in very good agreement with analytic results based on Fermi liquid theory. Scattering of conduction electrons in higher, l>0l>0, angular momentum channels is also considered and an expression is derived for the corresponding transport time and used to discuss the influence of non--resonant scattering on the transport properties.Comment: 45 pages, RevTeX, 28 figures, available on reques

    Mechanism for large thermoelectric power in negative-U molecular quantum dots

    Full text link
    We investigate with the aid of numerical renormalization group techniques the thermoelectric properties of a molecular quantum dot described by the negative-U Anderson model. We show that the charge Kondo effect provides a mechanism for enhanced thermoelectric power via a correlation induced asymmetry in the spectral function close to the Fermi level. We show that this effect results in a dramatic enhancement of the Kondo induced peak in the thermopower of negative-U systems with Seebeck coefficients exceeding 50μV/K\mu V/K over a wide range of gate voltages.Comment: 4 pages, 4 figures; published versio

    The numerical renormalization group method for quantum impurity systems

    Full text link
    In the beginning of the 1970's, Wilson developed the concept of a fully non-perturbative renormalization group transformation. Applied to the Kondo problem, this numerical renormalization group method (NRG) gave for the first time the full crossover from the high-temperature phase of a free spin to the low-temperature phase of a completely screened spin. The NRG has been later generalized to a variety of quantum impurity problems. The purpose of this review is to give a brief introduction to the NRG method including some guidelines of how to calculate physical quantities, and to survey the development of the NRG method and its various applications over the last 30 years. These applications include variants of the original Kondo problem such as the non-Fermi liquid behavior in the two-channel Kondo model, dissipative quantum systems such as the spin-boson model, and lattice systems in the framework of the dynamical mean field theory.Comment: 55 pages, 27 figures, submitted to Rev. Mod. Phy

    Thermoelectric effects in Kondo correlated quantum dots

    Full text link
    In this Letter we study thermoelectric effects in ultra small quantum dots. We study the behaviour of the thermopower, Peltier coefficient and thermal conductance both in the sequencial tunneling regime and in the regime where Kondo correlations develope. Both cases of linear response and non-equilibrium induced by strong temperature gradients are considered. The thermopower is a very sensitive tool to detect Kondo correlations. It changes sign both as a function of temperature and temperature gradient. We also discuss violations of the Wiedemann-Franz law.Comment: 7 pages; 5 figure

    Anderson impurity model at finite Coulomb interaction U: generalized Non-crossing Approximation

    Full text link
    We present an extension of the non-crossing approximation (NCA), which is widely used to calculate properties of Anderson impurity models in the limit of infinite Coulomb repulsion UU\to\infty, to the case of finite UU. A self-consistent conserving pseudo-particle representation is derived by symmetrizing the usual NCA diagrams with respect to empty and doubly occupied local states. This requires an infinite summation of skeleton diagrams in the generating functional thus defining the ``Symmetrized finite-U NCA'' (SUNCA). We show that within SUNCA the low energy scale TKT_K (Kondo temperature) is correctly obtained, in contrast to other simpler approximations discussed in the literature.Comment: 7 pages, 6 figure
    corecore