43 research outputs found
Osteoporosis in Celiac Disease: An Update
Celiac disease (CD) is an autoimmune disorder triggered by gluten ingestion in genetically predisposed individuals. In addition to the typical gastrointestinal symptoms such as diarrhea, bloating, or chronic abdominal pain, CD may also present a wide spectrum of manifestations, including low bone mineral density (BMD) and osteoporosis. This review aims to describe the role of CD in the development of skeletal alterations, underlying important clinical aspects and therapeutic implications. The etiopathology of bone lesions in CD is multifactorial and their management is challenging. Here, we provide gastroenterologists and orthopedics with an up-to-date overview on the link between CD and osteoporosis to improve the management of the CD condition
Comparison between Capillary and Serum Lactate Levels in Predicting Short-Term Mortality of Septic Patients at the Emergency Department
Sepsis is a time-dependent and life-threating condition related to macro- and micro-circulatory impairment leading to anaerobic metabolism and lactate increase. We assessed the prognostic accuracy of capillary lactates (CLs) vs. serum ones (SLs) on 48-h and 7-day mortality in patients with suspected sepsis. This observational, prospective, single-centre study was conducted between October 2021 and May 2022. Inclusion criteria were: (i) suspect of infection; (ii) qSOFA ≥ 2; (iii) age ≥ 18 years; (iv) signed informed consent. CLs were assessed with LactateProTM2®. 203 patients were included: 19 (9.3%) died within 48 h from admission to the Emergency Department, while 28 (13.8%) within 7 days. Patients deceased within 48 h (vs. survived) had higher CLs (19.3 vs. 5 mmol/L, p < 0.001) and SLs (6.5 vs. 1.1 mmol/L, p = 0.001). The best CLs predictive cut-off for 48-h mortality was 16.8 mmol/L (72.22% sensitivity, 94.02% specificity). Patients within 7 days had higher CLs (11.5 vs. 5 mmol/L, p = 0.020) than SLs (2.75 vs. 1.1 mmol/L, p < 0.001). The multivariate analysis confirmed CLs and SLs as independent predictors of 48-h and 7-day mortality. CLs can be a reliable tool for their inexpensiveness, rapidity and reliability in identifying septic patients at high risk of short-term mortality
Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer
Familial aggregation is a significant risk factor for the development of thyroid cancer and Familial Non-Medullary Thyroid Cancer (FNMTC) accounts for 5-7% of all NMTC. Whole Exome Sequencing analysis in the family affected by FNMTC with oncocytic features where our group previously identified a predisposing locus on chromosome 19p13.2, revealed a novel heterozygous mutation (c.400G>A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F, mapping to the linkage locus. In the thyroid FRTL-5 cell model stably expressing the mutant MYO1F p.Gly134Ser protein we observed an altered mitochondrial network, with increased mitochondrial mass and a significant increase of both intracellular and extracellular Reactive Oxygen Species, compared to cells expressing the wild-type protein or carrying the empty vector. The mutation conferred a significant advantage in colony formation, invasion and anchorage independent growth. These data were corroborated by in vivo studies in zebrafish, since we demonstrated that the mutant MYO1F p.Gly134Ser, when overexpressed, can induce proliferation in whole vertebrate embryos, compared to the wild-type one. MYO1F screening in additional 192 FNMTC families identified another variant in exon 7, which leads to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. Our study identified for the first time a role for MYO1F in NMTC. This article is protected by copyright. All rights reserved
Presepsin levels and COVID-19 severity: a systematic review and meta-analysis
Plasmatic presepsin (PSP) is a novel biomarker reported to be useful for sepsis diagnosis and prognosis. During the pandemic, only few studies highlighted a possible correlation between PSP and COVID-19 severity, but results remain inconsistent. The present study aims to establish the correlation between PSP and COVID-19 severity. English-language papers assessing a correlation between COVID-19 and PSP from MEDLINE, PubMed, Google Scholar, Cochrane Library, MeSH, LitCovid NLM, EMBASE, CINAHL Plus and the World Health Organization (WHO) website, published from January 2020 were considered with no publication date limitations. Two independent reviewers performed data abstraction and quality assessment, and one reviewer resolved inconsistencies. The protocol was registered on PROSPERO (CRD42022325971).Fifteen articles met our eligibility criteria. The aggregate study population included 1373 COVID-19 patients who had undergone a PSP assessment. The random-effect meta-analysis was performed in 7 out of 15 selected studies, considering only those reporting the mean PSP levels in low- and high-severity cases (n = 707).The results showed that the pooled mean difference of PSP levels between high- and low-severity COVID-19 patients was 441.70 pg/ml (95%CI: 150.40-732.99 pg/ml).Our data show that presepsin is a promising biomarker that can express COVID-19 severity
Acute Prosthetic Joint Infections with Poor Outcome Caused by Staphylococcus Aureus Strains Producing the Panton-Valentine Leukocidin
The aim of this study was to investigate whether the presence of Staphylococcus aureus (SA) producing the Panton-Valentine leukocidin (PVL) affects the outcome of Prosthetic Joint Infection (PJI). Patients with acute and chronic PJI sustained by SA were prospectively enrolled at the orthopedic unit of "Casa di Cura Santa Maria Maddalena", from January 2019 to October 2021. PJI diagnosis was reached according to the diagnostic criteria of the International Consensus Meeting on PJI of Philadelphia. Synovial fluid obtained via joint aspirations was collected in order to isolate SA. The detection of PVL was performed via real-time quantitative PCR (RT-qPCR). The outcome assessment was performed using the criteria of the Delphi-based International Multidisciplinary Consensus. Twelve cases of PJI caused by SA were included. Nine (75%) cases were acute PJI treated using debridement, antibiotic and implant retention (DAIR); the remaining three (25%) were chronic PJI treated using two-stage (n = 2) and one-stage revision (n = 1), respectively. The SA strains that tested positive for PVL genes were 5/12 (41.6%,). Treatment failure was documented in three cases of acute PJI treated using DAIR, all supported by SA-PVL strains (p < 0.045). The remaining two cases were chronic PJI treated with a revision arthroplasty (one and two stage, respectively), with a 100% eradication rate in a medium follow-up of 24 months. Although a small case series, our study showed a 100% failure rate in acute PJI, probably caused by SA PVL-producing strains treated conservatively (p < 0.04). In this setting, toxin research should guide radical surgical treatment and targeted antibiotic therapy
Bioenergetics of cancer cells in anoxia and role of the miRNAs in melanoma resistance to targeted therapies
Tumours are characterized by a metabolic rewiring that helps transformed cells to survive in harsh conditions.
The endogenous inhibitor of the ATP-synthase IF1 is overexpressed in several tumours and it has been proposed to drive metabolic adaptation. In ischemic normal-cells, IF1 acts limiting the ATP consumption by the reverse activity of the ATP-synthase, activated by ΔΨm collapse. Conversely, IF1 role in cancer cells is still unclear. It has been proposed that IF1 favours cancer survival by preventing energy dissipation in low oxygen availability, a frequent condition in solid tumours. Our previous data proved that in cancer cells hypoxia does not abolish ΔΨm, avoiding the ATP-synthase reversal and IF1 activation. In this study, we investigated the bioenergetics of cancer cells in conditions mimicking anoxia to evaluate the possible role of IF1. Data obtained indicate that also in cancer cells the ΔΨm collapse induces the ATP-synthase reversal and its inhibition by IF1. Moreover, we demonstrated that upon uncoupling conditions, IF1 favours cancer cells growth preserving ATP levels and energy charge. We also showed that in these conditions IF1 favours the mitochondrial mass renewal, a mechanism we proposed driving apoptosis-resistance.
Cancer adaptability is also associated with the onset of therapy resistance, the major challenge for melanoma treatment. Recent studies demonstrated that miRNAs dysregulation drive melanoma progression and drug-resistance by regulating tumour-suppressor and oncogenes. In this context, we attempted to identify and characterize miRNAs driving resistance to vemurafenib in patient-derived metastatic melanoma cells BRAFV600E-mutated. Our results highlighted that several oncogenic pathways are altered in resistant cells, indicating the complexity of both drug-resistance phenomena and miRNAs action. Profiling analysis identified a group of dysregulated miRNAs conserved in vemurafenib-resistance cells from distinct patients, suggesting that they ubiquitously drive drug-resistance. Functional studies performed with a first miRNA confirmed its pivotal role in resistance towards vemurafenib
Mitochondrial Mass Assessment in a Selected Cell Line under Different Metabolic Conditions
Changes of quantity and/or morphology of cell mitochondria are often associated with metabolic modulation, pathology, and apoptosis. Exogenous fluorescent probes used to investigate changes in mitochondrial content and dynamics are strongly dependent, for their internalization, on the mitochondrial membrane potential and composition, thus limiting the reliability of measurements. To overcome this limitation, genetically encoded recombinant fluorescent proteins, targeted to different cellular districts, were used as reporters. Here, we explored the potential use of mitochondrially targeted red fluorescent probe (mtRFP) to quantify, by flow cytometry, mitochondrial mass changes in cells exposed to different experimental conditions. We first demonstrated that the mtRFP fluorescence intensity is stable during cell culture and it is related with the citrate synthase activity, an established marker of the mitochondrial mass. Incidentally, the expression of mtRFP inside mitochondria did not alter the oxygen consumption rate under both state 3 and 4 respiration conditions. In addition, using this method, we showed for the first time that different inducers of mitochondrial mass change, such as hypoxia exposure or resveratrol treatment of cells, could be consistently detected. We suggest that transfection and selection of stable clones expressing mtRFP is a reliable method to monitor mitochondrial mass changes, particularly when pathophysiological or experimental conditions change DYm, as it occurs during mitochondrial uncoupling or hypoxia/anoxia conditions
Enteric Neuromyopathies: Highlights on Genetic Mechanisms Underlying Chronic Intestinal Pseudo-Obstruction
Severe gut motility disorders are characterized by the ineffective propulsion of intestinal contents. As a result, the patients develop disabling/distressful symptoms, such as nausea and vomiting along with altered bowel habits up to radiologically demonstrable intestinal sub-obstructive episodes. Chronic intestinal pseudo-obstruction (CIPO) is a typical clinical phenotype of severe gut dysmotility. This syndrome occurs due to changes altering the morpho-functional integrity of the intrinsic (enteric) innervation and extrinsic nerve supply (hence neuropathy), the interstitial cells of Cajal (ICC) (mesenchymopathy), and smooth muscle cells (myopathy). In the last years, several genes have been identified in different subsets of CIPO patients. The focus of this review is to cover the most recent update on enteric dysmotility related to CIPO, highlighting (a) forms with predominant underlying neuropathy, (b) forms with predominant myopathy, and (c) mitochondrial disorders with a clear gut dysfunction as part of their clinical phenotype. We will provide a thorough description of the genes that have been proven through recent evidence to cause neuro-(ICC)-myopathies leading to abnormal gut contractility patterns in CIPO. The discovery of susceptibility genes for this severe condition may pave the way for developing target therapies for enteric neuro-(ICC)-myopathies underlying CIPO and other forms of gut dysmotility
Gluten and Wheat in Women’s Health: Beyond the Gut
Since the rise of awareness of gluten/wheat-related disorders in the academic and clinical field in the last few decades, misinformation regarding the gluten-free diet (GFD) and its impact on health has been spreading among the general population. Despite the established link between gluten and celiac disease (CD), where a GFD is mandatory to reach clinical and histological remission, things are more complicated when it comes to non-celiac gluten/wheat sensitivity (NCGWS) and other autoimmune/dysimmune disorders. In the last conditions, a beneficial effect of gluten withdrawal has not been properly assessed, but still is often suggested without strong supporting evidence. In this context, women have always been exposed, more than men, to higher social pressure related to nutritional behaviors and greater engagement in controlling body weight. With this narrative review, we aim to summarize current evidence on the adherence to a GFD, with particular attention to the impact on women’s health
Biased versus Partial Agonism in the Search for Safer Opioid Analgesics
Opioids such as morphine-acting at the mu opioid receptor-are the mainstay for treatment of moderate to severe pain and have good efficacy in these indications. However, these drugs produce a plethora of unwanted adverse effects including respiratory depression, constipation, immune suppression and with prolonged treatment, tolerance, dependence and abuse liability. Studies in beta-arrestin 2 gene knockout (beta arr2(-/-)) animals indicate that morphine analgesia is potentiated while side effects are reduced, suggesting that drugs biased away from arrestin may manifest with a reduced-side-effect profile. However, there is controversy in this area with improvement of morphine-induced constipation and reduced respiratory effects in beta arr2(-/-) mice. Moreover, studies performed with mice genetically engineered with G-protein-biased mu receptors suggested increased sensitivity of these animals to both analgesic actions and side effects of opioid drugs. Several new molecules have been identified as mu receptor G-protein-biased agonists, including oliceridine (TRV130), PZM21 and SR-17018. These compounds have provided preclinical data with apparent support for bias toward G proteins and the genetic premise of effective and safer analgesics. There are clinical data for oliceridine that have been very recently approved for short term intravenous use in hospitals and other controlled settings. While these data are compelling and provide a potential new pathway-based target for drug discovery, a simpler explanation for the behavior of these biased agonists revolves around differences in intrinsic activity. A highly detailed study comparing oliceridine, PZM21 and SR-17018 (among others) in a range of assays showed that these molecules behave as partial agonists. Moreover, there was a correlation between their therapeutic indices and their efficacies, but not their bias factors. If there is amplification of G-protein, but not arrestin pathways, then agonists with reduced efficacy would show high levels of activity at G-protein and low or absent activity at arrestin; offering analgesia with reduced side effects or 'apparent bias'. Overall, the current data suggests-and we support-caution in ascribing biased agonism to reduced-side-effect profiles for mu-agonist analgesics