663 research outputs found

    Integrated survey for the reconstruction of the Papal Basilica and the Sacred Convent of St. Francis in Assisi, Italy

    Get PDF
    The Papal Basilica and the Sacred Convent of Saint Francis in Assisi in Italy are characterized by unique and composite particularities that need an exhaustive knowledge of the sites themselves to guarantee visitor's security and safety, considering all the people and personnel normally present in the site, visitors with disabilities and finally the needs for cultural heritage preservation and protection. This aim can be reached using integrated systems and innovative technologies, such as Internet of Everything (IoE), which can connect people, things (smart sensors, devices and actuators; mobile terminals; wearable devices; etc.), data/information/knowledge and processes to reach the wanted objectives. The IoE system must implement and support an Integrated Multidisciplinary Model for Security and Safety Management (IMMSSM) for the specific context, using a multidisciplinary approach. The purpose of the paper is to illustrate the integrated survey for the reconstruction of the considered site that was necessary to obtain all the necessary information to start to set up the considered IMMSSM and the related IoE based technological system

    Integrated surveying for the archaeological documentation of a neolithic site

    Get PDF
    It has been tested the applicability of integrated surveys (remote sensing, digital photogrammetry and terrestrial laser scanning (TLS)) in order to verify, through gradual and successive steps, how geomatic techniques can get 3D results with metric value combined with a quality content for an archaeological site. In particular, the data have been collected during the excavation campaign of Neolithic archaeological site in Taranto. The possibilities to scan articulated forms, in the presence of curve, concavity and convexity, and jutting parts rotate, characterized by alterations, through the acquisition of a dense points cloud makes the technique TLS needed in archaeology. Through the photogrammetric technique the laser data has been integrated concerning some details found on the site for which it has been required a higher degree of detail. The photogrammetric data has been acquired with the calibrated camera. The processing of the acquired data and their integration has been made possible to study an important archeological site, in its totality, from small scale (general site framework) to large scale (3D model with a high degree of detail) and to structure a multi-temporal database for simplified data management

    Scan to BIM for 3D reconstruction of the papal basilica of saint Francis in Assisi In Italy

    Get PDF
    The historical building heritage, present in the most of Italian cities centres, is, as part of the construction sector, a working potential, but unfortunately it requires planning of more complex and problematic interventions. However, policies to support on the existing interventions, together with a growing sensitivity for the recovery of assets, determine the need to implement specific studies and to analyse the specific problems of each site. The purpose of this paper is to illustrate the methodology and the results obtained from integrated laser scanning activity in order to have precious architectural information useful not only from the cultural heritage point of view but also to construct more operative and powerful tools, such as BIM (Building Information Modelling) aimed to the management of this cultural heritage. The Papal Basilica and the Sacred Convent of Saint Francis in Assisi in Italy are, in fact, characterized by unique and complex peculiarities, which require a detailed knowledge of the sites themselves to ensure visitor’s security and safety. For such a project, we have to take in account all the people and personnel normally present in the site, visitors with disabilities and finally the needs for cultural heritage preservation and protection. This aim can be reached using integrated systems and new technologies, such as Internet of Everything (IoE), capable of connecting people, things (smart sensors, devices and actuators; mobile terminals; wearable devices; etc.), data/information/knowledge and processes to reach the desired goals. The IoE system must implement and support an Integrated Multidisciplinary Model for Security and Safety Management (IMMSSM) for the specific context, using a multidisciplinary approach

    Semi-automated detection of surface degradation on bridges based on a level set method

    Get PDF
    Due to the effect of climate factors, natural phenomena and human usage, buildings and infrastructures are subject of progressive degradation. The deterioration of these structures has to be monitored in order to avoid hazards for human beings and for the natural environment in their neighborhood. Hence, on the one hand, monitoring such infrastructures is of primarily importance. On the other hand, unfortunately, nowadays this monitoring effort is mostly done by expert and skilled personnel, which follow the overall data acquisition, analysis and result reporting process, making the whole monitoring procedure quite expensive for the public (and private, as well) agencies. This paper proposes the use of a partially user-assisted procedure in order to reduce the monitoring cost and to make the obtained result less subjective as well. The developed method relies on the use of images acquired with standard cameras by even inexperienced personnel. The deterioration on the infrastructure surface is detected by image segmentation based on a level sets method. The results of the semi-automated analysis procedure are remapped on a 3D model of the infrastructure obtained by means of a terrestrial laser scanning acquisition. The proposed method has been successfully tested on a portion of a road bridge in Perarolo di Cadore (BL), Italy

    Photonic Bloch oscillations of correlated particles

    Full text link
    A photonic realization of Bloch oscillations (BOs) of two correlated electrons that move on a one-dimensional periodic lattice, based on spatial light transport in a square waveguide array with a defect line, is theoretically proposed. The signature of correlated BOs, such as frequency doubling of the oscillation frequency induced by particle interaction, can be simply visualized by monitoring the spatial path followed by an optical beam that excites the array near the defect line.Comment: 4 page

    New Multifunctional Lanthanide and Zr(IV) Phosphonates Derived from the 5-(dihydroxyphosphoryl) Isophthalate Ligand as Proton Conductors

    Get PDF
    Metal phosphonates are essentially acidic solids featured by groups such as P-OH, -COOH, etc. Moreover, the presence of coordination and lattice water molecules favors the formation of H-bond networks, which make these compounds appropriate as proton conductors, attractive for proton exchange membranes (PEMs) of fuel Cells.1 We report here, general characteristics of metal phosphonate derivatives composed of the polyfunctional 5-(dihydroxyphosphoryl) isophthalate ligand2 and lanthanides or zirconium ions. In the case of the lanthanide derivatives, crystalline compounds were synthesized under hydrothermal conditions. Preliminary results suggest that at least three isostructural series of compounds are formed. One of them, with La3+ derivative as prototype, is characterized by an orthorhombic unit cell (a = 12.7745(6) Å, b = 11.8921(4) Å, c = 7.2193(5) Å). Pr3+, Eu3+ and Gd3+ compounds, displays a monoclinic unit cell likewise the Yb3+ solid, the latter exhibiting different crystallographic parameters. Zr(IV) = compound, with formula Zr[(HO3P-C6H3-(COO)2H)2]·8H2O; was obtained at 80 ºC in the presence of HF as mineralizing agent. This solid crystallizes in an orthorhombic unit cell (a = 21.9306 Å, b = 16.6169 Å, c = 3.6462 Å). All these compounds contain in their frameworks water molecules that contribute to the formation of H-bond networks, making them prone as proton conductor candidates. Structural and proton conductivity are underway.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Plan Propio de Investigación de la UMA MAT2016-77648

    Inhibition of type I interferon induction and signalling by mosquito-borne flaviviruses

    Get PDF
    The Flavivirus genus (Flaviviridae family) contains a number of important human pathogens, including dengue and Zika viruses, which have the potential to cause severe disease. In order to efficiently establish a productive infection in mammalian cells, flaviviruses have developed key strategies to counteract host immune defences, including the type I interferon response. They employ different mechanisms to control interferon signal transduction and effector pathways, and key research generated over the past couple of decades has uncovered new insights into their abilities to actively decrease interferon antiviral activity. Given the lack of antivirals or prophylactic treatments for many flaviviral infections, it is important to fully understand how these viruses affect cellular processes to influence pathogenesis and disease outcome. This review will discuss the strategies mosquito-borne flaviviruses have evolved to antagonise type I interferon mediated immune responses

    Optical pulse propagation in a switched-on photonic lattice: Rabi effect with the roles of light and matter interchanged

    Full text link
    A light pulse propagating in a suddenly switched on photonic lattice, when the central frequency lies in the photonic band gap, is an analog of the Rabi model where the two-level system is the two resonant (i.e. Bragg-coupled) Fourier modes of the pulse, while the photonic lattice serves as a monochromatic external field. A simple theory of these Rabi oscillations is given and confirmed by the numerical solution of the corresponding Maxwell equations. This is a direct, i.e. temporal, analog of the Rabi effect, additionally to the spatial analog in optical beam propagation described in Opt. Lett. 32, 1920 (2007). An additional high-frequency modulation of the Rabi oscillations reflects the lattice-induced energy transfer between the electric and magnetic fields of the pulse.Comment: 3 pages, 5 figure

    Polychromatic Optical Bloch Oscillations

    Full text link
    Bloch oscillations (BOs) of polychromatic beams in circularly-curved optical waveguide arrays are smeared out owing to the dependence of the BO spatial period on wavelength. Here it is shown that restoring of the self-imaging property of the array and approximate BOs over relatively broad spectral ranges can be achieved by insertion of suitable lumped phase slips uniformly applied across the array.Comment: 3 pages, 4 figure
    • …
    corecore