8 research outputs found

    Infant antibody and B-cell responses following confirmed pediatric GII.17 norovirus infections functionally distinguish GII.17 genetic clusters

    Get PDF
    Genogroup II (GII) noroviruses are a major cause of diarrheal disease burden in children in both high- and low-income countries. GII.17 noroviruses are composed of distinct genetic clusters (I, II, IIIa, and IIIb) and have shown potential for replacing historically more prevalent GII.4 strains, but the serological basis for GII.17 antigenic diversity has not been studied in children. Utilizing samples from a birth cohort, we investigated antibody and B-cell responses to GII.17 cluster variants in confirmed GII.17 infections in young children as well as demonstrated that the distinct genetic clusters co-circulate. Polyclonal serum antibodies bound multiple clusters but showed cluster-specific blockade activity in a surrogate virus neutralization assay. Antibodies secreted by immortalized memory B cells (MBCs) from an infant GII.17 case were highly specific to GII.17 and exhibited blockade activity against this genotype. We isolated an MBC-derived GII.17-specific Immunoglobulin A (IgA) monoclonal antibody called NVA.1 that potently and selectively blocked GII.17 cluster IIIb and recognized an epitope targeted in serum from cluster IIIb–infected children. These data indicate that multiple antigenically distinct GII.17 variants co-circulate in young children, suggesting retention of cluster diversity alongside potential for immune escape given the existence of antibody-defined cluster-specific epitopes elicited during infection

    Infant antibody and B-cell responses following confirmed pediatric GII.17 norovirus infections functionally distinguish GII.17 genetic clusters

    Get PDF
    Genogroup II (GII) noroviruses are a major cause of diarrheal disease burden in children in both high- and low-income countries. GII.17 noroviruses are composed of distinct genetic clusters (I, II, IIIa, and IIIb) and have shown potential for replacing historically more prevalent GII.4 strains, but the serological basis for GII.17 antigenic diversity has not been studied in children. Utilizing samples from a birth cohort, we investigated antibody and B-cell responses to GII.17 cluster variants in confirmed GII.17 infections in young children as well as demonstrated that the distinct genetic clusters co-circulate. Polyclonal serum antibodies bound multiple clusters but showed cluster-specific blockade activity in a surrogate virus neutralization assay. Antibodies secreted by immortalized memory B cells (MBCs) from an infant GII.17 case were highly specific to GII.17 and exhibited blockade activity against this genotype. We isolated an MBC-derived GII.17-specific Immunoglobulin A (IgA) monoclonal antibody called NVA.1 that potently and selectively blocked GII.17 cluster IIIb and recognized an epitope targeted in serum from cluster IIIb–infected children. These data indicate that multiple antigenically distinct GII.17 variants co-circulate in young children, suggesting retention of cluster diversity alongside potential for immune escape given the existence of antibody-defined cluster-specific epitopes elicited during infection

    Effects of Different Animal Waste Treatment Technologies on Detection and Viability of Porcine Enteric Viruses▿

    No full text
    Enteric pathogens in animal waste that is not properly processed can contaminate the environment and food. The persistence of pathogens in animal waste depends upon the waste treatment technology, but little is known about persistence of porcine viruses. Our objectives were to characterize the porcine enteric viruses (porcine noroviruses [PoNoVs], porcine sapoviruses [PoSaVs], rotavirus A [RV-A], RV-B, and RV-C) in fresh feces or manure and to evaluate the effects of different candidate environmentally superior technologies (ESTs) for animal waste treatment on the detection of these viruses. Untreated manure and samples collected at different stages during and after treatment were obtained from swine farms that used conventional waste management (CWM) and five different candidate ESTs. The RNA from porcine enteric viruses was detected by reverse transcription-PCR and/or seminested PCR; PoSaV and RV-A were also detected by enzyme-linked immunosorbent assay. Cell culture immunofluorescence (CCIF) and experimental inoculation of gnotobiotic (Gn) pigs were used to determine RV-A/C infectivity in posttreatment samples. The PoSaV and RV-A were detected in pretreatment samples from each farm, whereas PoNoV and RV-C were detected in pretreatment feces from three of five and four of five farms using the candidate ESTs, respectively. After treatment, PoSaV RNA was detected only in the samples from the farm using CWM and not from the farms using the candidate ESTs. RV-A and RV-C RNAs were detected in four of five and three of four candidate ESTs, respectively, after treatment, but infectious particles were not detected by CCIF, nor were clinical signs or seroconversion detected in inoculated Gn pigs. These results indicate that only RV-A/C RNA, but no viral infectivity, was detected after treatment. Our findings address a public health concern regarding environmental quality surrounding swine production units

    Incubation increases oxidative imbalance compared to chick rearing in a seabird, the Magellanic penguin (Spheniscus magellanicus)

    No full text
    It is expected that activities which require a high use of energy could generate higher oxidative stress. In the present study, we have compared two breeding periods (incubation and chick rearing) with different energetic demands in the Magellanic penguin, predicting a higher oxidative unbalance during chick rearing since involves higher demanding activities such as chick feeding and greater nest protection than during incubation. Specifically, we predicted higher oxidative damage and lower antioxidant defences during chick rearing than during incubation. Fieldwork was conducted in a Magellanic penguin colony located in Estancia San Lorenzo (42°05′S, 63°49′W), Peninsula Valdes, Argentina, during the breeding season of 2014–2015. Surprisingly, our results did not support our initial prediction. Incubating adults had their oxidative status unbalanced showing significantly lower antioxidant levels than those rearing chicks. Moreover, oxidative damage did not show any significant variation between both breeding periods. Further, we did not find differences in oxidative status between sexes. Our results suggest that incubation is a highly demanding activity compared to chick rearing in terms of oxidative balance since the lower presence of antioxidants can be explained as they have probably depleted to limit oxidative damage by ROS. Differential foraging effort could explain such results as Magellanic penguins adjust their foraging location to prey availability performing longer foraging trips during incubation than during chick rearing which increases the energy costs and therefore imbalance penguins oxidative status. Our results show the importance of examining physiological markers such as oxidative stress to assess differences during the breeding cycle and how the behaviour at sea could explain such differences in seabirds.This study was funded by the Spanish Ministry of Economy and Competitiveness (CTM2011-24427). RCC received financial aid from an FPI and a mobility grant from the Spanish Ministry of Economy and Competitiveness (BES2012-059299 and EEBB-I-14-078877),Peer Reviewe

    DataSheet_1_Infant antibody and B-cell responses following confirmed pediatric GII.17 norovirus infections functionally distinguish GII.17 genetic clusters.pdf

    No full text
    Genogroup II (GII) noroviruses are a major cause of diarrheal disease burden in children in both high- and low-income countries. GII.17 noroviruses are composed of distinct genetic clusters (I, II, IIIa, and IIIb) and have shown potential for replacing historically more prevalent GII.4 strains, but the serological basis for GII.17 antigenic diversity has not been studied in children. Utilizing samples from a birth cohort, we investigated antibody and B-cell responses to GII.17 cluster variants in confirmed GII.17 infections in young children as well as demonstrated that the distinct genetic clusters co-circulate. Polyclonal serum antibodies bound multiple clusters but showed cluster-specific blockade activity in a surrogate virus neutralization assay. Antibodies secreted by immortalized memory B cells (MBCs) from an infant GII.17 case were highly specific to GII.17 and exhibited blockade activity against this genotype. We isolated an MBC-derived GII.17-specific Immunoglobulin A (IgA) monoclonal antibody called NVA.1 that potently and selectively blocked GII.17 cluster IIIb and recognized an epitope targeted in serum from cluster IIIb–infected children. These data indicate that multiple antigenically distinct GII.17 variants co-circulate in young children, suggesting retention of cluster diversity alongside potential for immune escape given the existence of antibody-defined cluster-specific epitopes elicited during infection.</p
    corecore