45,323 research outputs found

    Spherical linear waves in de Sitter spacetime

    Get PDF
    We apply Christodoulou's framework, developed to study the Einstein-scalar field equations in spherical symmetry, to the linear wave equation in de Sitter spacetime, as a first step towards the Einstein-scalar field equations with positive cosmological constant. We obtain an integro-differential evolution equation which we solve by taking initial data on a null cone. As a corollary we obtain elementary derivations of expected properties of linear waves in de Sitter spacetime: boundedness in terms of (characteristic) initial data, and a Price law establishing uniform exponential decay, in Bondi time, to a constant.Comment: 9 pages, 1 figure; v2: minor changes, references added, matches final published versio

    Predicting Intermediate Storage Performance for Workflow Applications

    Full text link
    Configuring a storage system to better serve an application is a challenging task complicated by a multidimensional, discrete configuration space and the high cost of space exploration (e.g., by running the application with different storage configurations). To enable selecting the best configuration in a reasonable time, we design an end-to-end performance prediction mechanism that estimates the turn-around time of an application using storage system under a given configuration. This approach focuses on a generic object-based storage system design, supports exploring the impact of optimizations targeting workflow applications (e.g., various data placement schemes) in addition to other, more traditional, configuration knobs (e.g., stripe size or replication level), and models the system operation at data-chunk and control message level. This paper presents our experience to date with designing and using this prediction mechanism. We evaluate this mechanism using micro- as well as synthetic benchmarks mimicking real workflow applications, and a real application.. A preliminary evaluation shows that we are on a good track to meet our objectives: it can scale to model a workflow application run on an entire cluster while offering an over 200x speedup factor (normalized by resource) compared to running the actual application, and can achieve, in the limited number of scenarios we study, a prediction accuracy that enables identifying the best storage system configuration

    Genetics Analysis Workshop 16 Problem 2: tTe Framingham Heart Study Data

    Get PDF
    Genetic Analysis Workshop 16 (GAW16) Problem 2 presented data from the Framingham Heart Study (FHS), an observational, prospective study of risk factors for cardiovascular disease begun in 1948. Data have been collected in three generations of family participants in the study and the data presented for GAW16 included phenotype data from all three generations, with four examinations of data collected repeatedly for the first two generations. The trait data consisted of information on blood pressure, hypertension treatment, lipid levels, diabetes and blood glucose, smoking, alcohol consumed, weight, and coronary heart disease incidence. Additionally, genotype data obtained through a genome-wide scan (FHS SHARe) of 550,000 single-nucleotide polymorphisms from Affymetrix chips were included with the GAW16 data. The genotype data were also used for GAW16 Problem 3, where simulated phenotypes were generated using the actual FHS genotypes. These data served to provide investigators with a rich resource to study the behavior of genome-wide scans with longitudinally collected family data and to develop and apply new procedures.National Heart, Lung and Blood Institute (2 N01-HC-25195-06); National Institutes of Health (National Institute of General Medical Sciences R01 GM031575

    Statistical Mechanics Characterization of Neuronal Mosaics

    Full text link
    The spatial distribution of neuronal cells is an important requirement for achieving proper neuronal function in several parts of the nervous system of most animals. For instance, specific distribution of photoreceptors and related neuronal cells, particularly the ganglion cells, in mammal's retina is required in order to properly sample the projected scene. This work presents how two concepts from the areas of statistical mechanics and complex systems, namely the \emph{lacunarity} and the \emph{multiscale entropy} (i.e. the entropy calculated over progressively diffused representations of the cell mosaic), have allowed effective characterization of the spatial distribution of retinal cells.Comment: 3 pages, 1 figure, The following article has been submitted to Applied Physics Letters. If it is published, it will be found online at http://apl.aip.org

    The complex channel networks of bone structure

    Full text link
    Bone structure in mammals involves a complex network of channels (Havers and Volkmann channels) required to nourish the bone marrow cells. This work describes how three-dimensional reconstructions of such systems can be obtained and represented in terms of complex networks. Three important findings are reported: (i) the fact that the channel branching density resembles a power law implies the existence of distribution hubs; (ii) the conditional node degree density indicates a clear tendency of connection between nodes with degrees 2 and 4; and (iii) the application of the recently introduced concept of hierarchical clustering coefficient allows the identification of typical scales of channel redistribution. A series of important biological insights is drawn and discussedComment: 3 pages, 1 figure, The following article has been submitted to Applied Physics Letters. If it is published, it will be found online at http://apl.aip.org
    • …
    corecore