4,065 research outputs found

    Casimir energy in a small volume multiply connected static hyperbolic pre-inflationary Universe

    Get PDF
    A few years ago, Cornish, Spergel and Starkman (CSS), suggested that a multiply connected ``small'' Universe could allow for classical chaotic mixing as a pre-inflationary homogenization process. The smaller the volume, the more important the process. Also, a smaller Universe has a greater probability of being spontaneously created. Previously DeWitt, Hart and Isham (DHI) calculated the Casimir energy for static multiply connected flat space-times. Due to the interest in small volume hyperbolic Universes (e.g. CSS), we generalize the DHI calculation by making a a numerical investigation of the Casimir energy for a conformally coupled, massive scalar field in a static Universe, whose spatial sections are the Weeks manifold, the smallest Universe of negative curvature known. In spite of being a numerical calculation, our result is in fact exact. It is shown that there is spontaneous vacuum excitation of low multipolar components.Comment: accepted for publication in phys. rev.

    Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans?

    Get PDF
    In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines

    RSMA for Dual-Polarized Massive MIMO Networks: A SIC-Free Approach

    Full text link
    Aiming at overcoming practical issues of successive interference cancellation (SIC), this paper proposes a dual-polarized rate-splitting multiple access (RSMA) technique for a downlink massive multiple-input multiple-output (MIMO) network. By modeling the effects of polarization interference, an in-depth theoretical analysis is carried out, in which we derive tight closed-form approximations for the outage probabilities and ergodic sum-rates. Simulation results validate the accuracy of the theoretical analysis and confirm the effectiveness of the proposed approach. For instance, under low to moderate cross-polar interference, our results show that the proposed dual-polarized MIMO-RSMA strategy outperforms the single-polarized MIMO-RSMA counterpart for all considered levels of residual SIC error.Comment: arXiv admin note: substantial text overlap with arXiv:2211.0085

    A comprehensive comparison of voltage and current control techniques for three-phase VSI converters

    Get PDF
    Converting electrical energy from direct current to alternate current, or vice versa, is one of the most frequently performed tasks in today’s electrical systems. The Voltage Source Inverter (VSI) is the most widely used topology to accomplish this task. This paper compares the performance of three control algorithms for voltage source inverter (VSI) with PI, PR and MP control algorithms were applied for voltage control and current control. For voltage control the VSI synthesizes the sinusoidal voltage system for an islanded application. In current control the VSI injects energy into the power grid by synthesizing sinusoidal currents. A general comparison is made of the performance of the three control algorithms under the presented conditions, helping to choose the control algorithm to use in a given application.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project QUALITY4POWER PTDC/EEI-EEE/28813/2017, and by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017. Mr. Luis A. M. Barros is supported by the doctoral scholarship PD/BD/143006/2018 granted by the Portuguese FCT foundation

    Emission-Line Galaxy Surveys as Probes of the Spatial Distribution of Dwarf Galaxies. I. The University of Michigan Survey

    Full text link
    Objective-prism surveys which select galaxies on the basis of line-emission are extremely effective at detecting low-luminosity galaxies and constitute some of the deepest available samples of dwarfs. In this study, we confirm that emission-line galaxies (ELGs) in the University of Michigan (UM) objective-prism survey (MacAlpine et al. 1977-1981) are reliable tracers of large-scale structure, and utilize the depth of the samples to examine the spatial distribution of low-luminosity (MB>_{B} > -18.0) dwarfs relative to higher luminosity giant galaxies (MB_{B} \leq -18.0) in the Updated Zwicky Catalogue (Falco et al. 1999). New spectroscopic data are presented for 26 UM survey objects. We analyze the relative clustering properties of the overall starbursting ELG and normal galaxy populations, using nearest neighbor and correlation function statistics. This allows us to determine whether the activity in ELGs is primarily caused by gravitational interactions. We conclude that galaxy-galaxy encounters are not the sole cause of activity in ELGs since ELGs tend to be more isolated and are more often found in the voids when compared to their normal galaxy counterparts. Furthermore, statistical analyses performed on low-luminosity dwarf ELGs show that the dwarfs are less clustered when compared to their non-active giant neighbors. The UM dwarf samples have greater percentages of nearest neighbor separations at large values and lower correlation function amplitudes relative to the UZC giant galaxy samples. These results are consistent with the expectations of galaxy biasing.Comment: 17 pages, 4 tables, 10 figures. Accepted for publication in the Ap

    The Murchison Widefield Array

    Get PDF
    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016]. 6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland

    Simulated hypergravity induces changes in human tendon-derived cells: from cell morphology to gene expression

    Get PDF
    Gravity influences physical and biological processes, having an impact on development, as well as homeostasis of living systems. The musculoskeletal system is comprised of several mechano- responsive tissues and altered gravitational forces are known to influence distinct properties, including bone mineral density and skeletal muscle mass. This is particularly relevant in a near- weightlessness (microgravity) environment, which is found during spaceflight and, not less importantly, during bed resting. Over the years, several studies have been conducted under simulated conditions of altered gravity owing to the advances on ground-based facilities, such as bioreactors for microgravity / hypo-gravity (1g) studies. Interestingly, microgravity-induced alterations are comparable to tissue degeneration caused by disuse and ageing. In turn, exposing musculoskeletal tissues to hypergravity may constitute a way of simulating (over)loading or, eventually, to be used as a measure to rescue cell phenotype after exposure to near-weightlessness conditions. Different studies have focused on bone, cartilage and skeletal muscle, but effects on tendons and ligaments have been underappreciated. Therefore, we evaluated the influence of increasing g-levels (5g, 10g, 15g and 20g) and different hypergravity exposure periods (4 and 16 h) on the behaviour of human tendon- derived cells (hTDCs). For this purpose, hTDCs were exposed to simulated hypergravity conditions using the Large Diameter Centrifuge (LDC) from the European Space Research and Technology Centre (ESTEC, ESA, The Netherlands). Human TDCs cultured under standard conditions (1g, normogravity, Earth gravity force) were used as controls. The effects of hypergravity on the viability of hTDCs, as well as on the expression of tendon related markers at the gene level were evaluated. Simulated hypergravity resulted in a reduced cell content after 16 h independently of g-level, as determined by DNA quantification. Additionally, the different g-levels studied led to changes in cell and cytoskeleton morphology. Strikingly, a 16-hour period of exposure resulted in alterations of gene expression profiles. Overall, gene expression of tendon-related markers, including collagen types I (col1a1) and III (col3a1), scleraxis (scx), tenomodulin (tnmd), decorin (dcn) and tenascin (tnc), seemed to be increased upon hypergravity stimulation and in comparison to cells cultured under control conditions. Altogether, these results highlight that altered gravity, particularly simulated hypergravity, has an influence on the phenotype of tendon cells, opening new avenues for research focused on using altered gravity as a model for overloading-induced tendon tissue injury or as measure to rescue the phenotype of degenerated tendon cells. Acknowledgements The authors would like to thank ESA Education Office for Spin Your Thesis! 2016 programme. R.C-A acknowledges the PhD grant SFRH/BD/96593/2013 from FCT â Fundação para a Ciência e a Tecnologia. SFRH/BD/96593/2013 from FCT –Fundação para a Ciência e a Tecnologiainfo:eu-repo/semantics/publishedVersio

    SDSS DR7 white dwarf catalog

    Get PDF
    We present a new catalog of spectroscopically confirmed white dwarf stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent more than a factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalogs based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log g if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.Facultad de Ciencias Astronómicas y Geofísica
    corecore