26 research outputs found

    Detecting Real-World Influence Through Twitter

    Get PDF
    In this paper, we investigate the issue of detecting the real-life influence of people based on their Twitter account. We propose an overview of common Twitter features used to characterize such accounts and their activity, and show that these are inefficient in this context. In particular, retweets and followers numbers, and Klout score are not relevant to our analysis. We thus propose several Machine Learning approaches based on Natural Language Processing and Social Network Analysis to label Twitter users as Influencers or not. We also rank them according to a predicted influence level. Our proposals are evaluated over the CLEF RepLab 2014 dataset, and outmatch state-of-the-art ranking methods.Comment: 2nd European Network Intelligence Conference (ENIC), Sep 2015, Karlskrona, Swede

    Active learning in annotating micro-blogs dealing with e-reputation

    Full text link
    Elections unleash strong political views on Twitter, but what do people really think about politics? Opinion and trend mining on micro blogs dealing with politics has recently attracted researchers in several fields including Information Retrieval and Machine Learning (ML). Since the performance of ML and Natural Language Processing (NLP) approaches are limited by the amount and quality of data available, one promising alternative for some tasks is the automatic propagation of expert annotations. This paper intends to develop a so-called active learning process for automatically annotating French language tweets that deal with the image (i.e., representation, web reputation) of politicians. Our main focus is on the methodology followed to build an original annotated dataset expressing opinion from two French politicians over time. We therefore review state of the art NLP-based ML algorithms to automatically annotate tweets using a manual initiation step as bootstrap. This paper focuses on key issues about active learning while building a large annotated data set from noise. This will be introduced by human annotators, abundance of data and the label distribution across data and entities. In turn, we show that Twitter characteristics such as the author's name or hashtags can be considered as the bearing point to not only improve automatic systems for Opinion Mining (OM) and Topic Classification but also to reduce noise in human annotations. However, a later thorough analysis shows that reducing noise might induce the loss of crucial information.Comment: Journal of Interdisciplinary Methodologies and Issues in Science - Vol 3 - Contextualisation digitale - 201

    Analyse de l’image de marque sur le Web 2.0

    Get PDF
    Analyse of entities representation over the Web 2.0Every day, millions of people publish their views on Web 2.0 (social networks,blogs, etc.). These comments focus on subjects as diverse as news, politics,sports scores, consumer objects, etc. The accumulation and agglomerationof these notices on an entity (be it a product, a company or a public entity) givebirth to the brand image of that entity. Internet has become in recent years aprivileged place for the emergence and dissemination of opinions and puttingWeb 2.0 at the head of observatories of opinions. The latter being a means ofaccessing the knowledge of the opinion of the world population.The image is here understood as the idea that a person or a group of peopleis that entity. This idea carries a priori on a particular subject and is onlyvalid in context for a given time. This perceived image is different from theentity initially wanted to broadcast (eg via a communication campaign). Moreover,in reality, there are several images in the end living together in parallel onthe network, each specific to a community and all evolve differently over time(imagine how would be perceived in each camp together two politicians edgesopposite). Finally, in addition to the controversy caused by the voluntary behaviorof some entities to attract attention (think of the declarations required orshocking). It also happens that the dissemination of an image beyond the frameworkthat governed the and sometimes turns against the entity (for example,« marriage for all » became « the demonstration for all »). The views expressedthen are so many clues to understand the logic of construction and evolution ofthese images. The aim is to be able to know what we are talking about and howwe talk with filigree opportunity to know who is speaking.viiIn this thesis we propose to use several simple supervised statistical automaticmethods to monitor entity’s online reputation based on textual contentsmentioning it. More precisely we look the most important contents and theirsauthors (from a reputation manager point-of-view). We introduce an optimizationprocess allowing us to enrich the data using a simulated relevance feedback(without any human involvement). We also compare content contextualizationmethod using information retrieval and automatic summarization methods.Wealso propose a reflection and a new approach to model online reputation, improveand evaluate reputation monitoring methods using Partial Least SquaresPath Modelling (PLS-PM). In designing the system, we wanted to address localand global context of the reputation. That is to say the features can explain thedecision and the correlation betweens topics and reputation. The goal of ourwork was to propose a different way to combine usual methods and featuresthat may render reputation monitoring systems more accurate than the existingones. We evaluate and compare our systems using state of the art frameworks: Imagiweb and RepLab. The performances of our proposals are comparableto the state of the art. In addition, the fact that we provide reputation modelsmake our methods even more attractive for reputation manager or scientistsfrom various fields.Image sur le web : analyse de la dynamique des images sur le Web 2.0. En plus d’être un moyen d’accès à la connaissance, Internet est devenu en quelques années un lieu privilégié pour l’apparition et la diffusion d’opinions.Chaque jour, des millions d’individus publient leurs avis sur le Web 2.0 (réseaux sociaux, blogs, etc.). Ces commentaires portent sur des sujets aussi variés que l’actualité, la politique, les résultats sportifs, biens culturels, des objets de consommation, etc. L’amoncellement et l’agglomération de ces avis publiés sur une entité (qu’il s’agisse d’un produit, une entreprise ou une personnalité publique)donnent naissance à l’image de marque de cette entité.L’image d’une entité est ici comprise comme l’idée qu’une personne ou qu’un groupe de personnes se fait de cette entité. Cette idée porte a priori sur un sujet particulier et n’est valable que dans un contexte, à un instant donné.Cette image perçue est par nature différente de celle que l’entité souhaitait initialement diffuser (par exemple via une campagne de communication). De plus,dans la réalité, il existe au final plusieurs images qui cohabitent en parallèle sur le réseau, chacune propre à une communauté et toutes évoluant différemment au fil du temps (imaginons comment serait perçu dans chaque camp le rapprochement de deux hommes politiques de bords opposés). Enfin, en plus des polémiques volontairement provoquées par le comportement de certaines entités en vue d’attirer l’attention sur elles (pensons aux tenues ou déclarations choquantes), il arrive également que la diffusion d’une image dépasse le cadre qui la régissait et même parfois se retourne contre l’entité (par exemple, «le mariage pour tous» devenu « la manif pour tous »). Les opinions exprimées constituent alors autant d’indices permettant de comprendre la logique de construction et d’évolution de ces images. Ce travail d’analyse est jusqu’à présent confié à des spécialistes de l’e-communication qui monnaient leur subjectivité. Ces derniers ne peuvent considérer qu’un volume restreint d’information et ne sont que rarement d’accord entre eux. Dans cette thèse, nous proposons d’utiliser différentes méthodes automatiques, statistiques, supervisées et d’une faible complexité permettant d’analyser et représenter l’image de marque d’entité à partir de contenus textuels les mentionnant. Plus spécifiquement, nous cherchons à identifier les contenus(ainsi que leurs auteurs) qui sont les plus préjudiciables à l’image de marque d’une entité. Nous introduisons un processus d’optimisation automatique de ces méthodes automatiques permettant d’enrichir les données en utilisant un retour de pertinence simulé (sans qu’aucune action de la part de l’entité concernée ne soit nécessaire). Nous comparer également plusieurs approches de contextualisation de messages courts à partir de méthodes de recherche d’information et de résumé automatique. Nous tirons également parti d’algorithmes de modélisation(tels que la Régression des moindres carrés partiels), dans le cadre d’une modélisation conceptuelle de l’image de marque, pour améliorer nos systèmes automatiques de catégorisation de documents textuels. Ces méthodes de modélisation et notamment les représentations des corrélations entre les différents concepts que nous manipulons nous permettent de représenter d’une part, le contexte thématique d’une requête de l’entité et d’autre, le contexte général de son image de marque. Nous expérimentons l’utilisation et la combinaison de différentes sources d’information générales représentant les grands types d’information auxquels nous sommes confrontés sur internet : de long les contenus objectifs rédigés à des informatives, les contenus brefs générés par les utilisateurs visant à partager des opinions. Nous évaluons nos approches en utilisant deux collections de données, la première est celle constituée dans le cadre du projet Imagiweb, la seconde est la collection de référence sur le sujet : CLEFRepLa

    Un modèle éditorial du troisième type

    Get PDF
    Après avoir comparé le modèle socioéconomique du DVD et celui de la VOD, qui sont tous les deux des modèles « éditoriaux » mais présentent des différences significatives, nous décrivons le modèle de Vodkaster, une entreprise française ayant procédé à une expérience originale en hybridant l’intangibilité du service VOD et la matérialité du produit DVD. Nous expliquons comment et pourquoi un troisième type de modèle éditorial a ainsi vu le jour, différent du modèle du DVD en matière de compatibilité et de portabilité, et différent du modèle de la VOD, puisque le consommateur y jouit d’une pleine disposition lui permettant de pouvoir donner, prêter ou revendre le bien qu’il s’est procuré. En conclusion, nous expliquons pourquoi ce troisième type de modèle éditorial est à notre avis exemplaire du renouvellement des logiques propriétaires dans les industries culturelles.After having compared the DVD and the VOD socioeconomics models, which are both “publishing” models but have significant differences, we describe the Vodkaster’s case, a French company that carried out an original experience by hybridizing the intangibility of the VOD service and the materiality of the DVD product. We explain why and how a third type of publishing model was therefore created, which is characterized by compatibility, portability and the full disposition of property. In conclusion, we explain why this third type of publishing model provides an illustration of what we believe is a resurgence of the proprietary logics within the cultural industries

    Bilingual and Cross Domain Politics Analysis

    Get PDF
    Abstract. Opinion mining on Twitter recently attracted research interest in politics using Information Retrieval (IR) and Natural Language Processing (NLP). However, getting domain-specific annotated data still remains a costly manual step. In addition, the amount and quality of these annotation may be critical regarding the performance of machine learning (ML) based systems. An alternative solution is to use cross-language and cross-domain sets to simulate training data. This paper describe a ML approach to automatically annotate Spanish tweets dealing with the online-reputation of politicians. Our main finding is that a simple statistical NLP classifier without in-domain training can provide as reliable annotation as humans annotators and outperform more specific resources such as lexicon or in-domain data

    Systèmes du LIA à DEFT'13

    Get PDF
    National audienceThe Systems of LIA at DEFT'13 The 2013 Défi de Fouille de Textes (DEFT) campaign is interested in two types of language analysis tasks, the document classification and the information extraction in the specialized domain of cuisine recipes. We present the systems that the LIA has used in DEFT 2013. Our systems show interesting results, even though the complexity of the proposed tasks.La campagne Défi de Fouille de Textes (DEFT) en 2013 s'est intéressée à deux types de fonctions d'analyse du langage, la classification de documents et l'extraction d'information dans le domaine de spécialité des recettes de cuisine. Nous présentons les systèmes du LIA appliqués à DEFT 2013. Malgré la difficulté des tâches proposées, des résultats intéressants ont été obtenus par nos systèmes

    Analyse of entities representation over the Web 2.0

    No full text
    Image sur le web : analyse de la dynamique des images sur le Web 2.0. En plus d’être un moyen d’accès à la connaissance, Internet est devenu en quelques années un lieu privilégié pour l’apparition et la diffusion d’opinions.Chaque jour, des millions d’individus publient leurs avis sur le Web 2.0 (réseaux sociaux, blogs, etc.). Ces commentaires portent sur des sujets aussi variés que l’actualité, la politique, les résultats sportifs, biens culturels, des objets de consommation, etc. L’amoncellement et l’agglomération de ces avis publiés sur une entité (qu’il s’agisse d’un produit, une entreprise ou une personnalité publique)donnent naissance à l’image de marque de cette entité.L’image d’une entité est ici comprise comme l’idée qu’une personne ou qu’un groupe de personnes se fait de cette entité. Cette idée porte a priori sur un sujet particulier et n’est valable que dans un contexte, à un instant donné.Cette image perçue est par nature différente de celle que l’entité souhaitait initialement diffuser (par exemple via une campagne de communication). De plus,dans la réalité, il existe au final plusieurs images qui cohabitent en parallèle sur le réseau, chacune propre à une communauté et toutes évoluant différemment au fil du temps (imaginons comment serait perçu dans chaque camp le rapprochement de deux hommes politiques de bords opposés). Enfin, en plus des polémiques volontairement provoquées par le comportement de certaines entités en vue d’attirer l’attention sur elles (pensons aux tenues ou déclarations choquantes), il arrive également que la diffusion d’une image dépasse le cadre qui la régissait et même parfois se retourne contre l’entité (par exemple, «le mariage pour tous» devenu « la manif pour tous »). Les opinions exprimées constituent alors autant d’indices permettant de comprendre la logique de construction et d’évolution de ces images. Ce travail d’analyse est jusqu’à présent confié à des spécialistes de l’e-communication qui monnaient leur subjectivité. Ces derniers ne peuvent considérer qu’un volume restreint d’information et ne sont que rarement d’accord entre eux. Dans cette thèse, nous proposons d’utiliser différentes méthodes automatiques, statistiques, supervisées et d’une faible complexité permettant d’analyser et représenter l’image de marque d’entité à partir de contenus textuels les mentionnant. Plus spécifiquement, nous cherchons à identifier les contenus(ainsi que leurs auteurs) qui sont les plus préjudiciables à l’image de marque d’une entité. Nous introduisons un processus d’optimisation automatique de ces méthodes automatiques permettant d’enrichir les données en utilisant un retour de pertinence simulé (sans qu’aucune action de la part de l’entité concernée ne soit nécessaire). Nous comparer également plusieurs approches de contextualisation de messages courts à partir de méthodes de recherche d’information et de résumé automatique. Nous tirons également parti d’algorithmes de modélisation(tels que la Régression des moindres carrés partiels), dans le cadre d’une modélisation conceptuelle de l’image de marque, pour améliorer nos systèmes automatiques de catégorisation de documents textuels. Ces méthodes de modélisation et notamment les représentations des corrélations entre les différents concepts que nous manipulons nous permettent de représenter d’une part, le contexte thématique d’une requête de l’entité et d’autre, le contexte général de son image de marque. Nous expérimentons l’utilisation et la combinaison de différentes sources d’information générales représentant les grands types d’information auxquels nous sommes confrontés sur internet : de long les contenus objectifs rédigés à des informatives, les contenus brefs générés par les utilisateurs visant à partager des opinions. Nous évaluons nos approches en utilisant deux collections de données, la première est celle constituée dans le cadre du projet Imagiweb, la seconde est la collection de référence sur le sujet : CLEFRepLabAnalyse of entities representation over the Web 2.0Every day, millions of people publish their views on Web 2.0 (social networks,blogs, etc.). These comments focus on subjects as diverse as news, politics,sports scores, consumer objects, etc. The accumulation and agglomerationof these notices on an entity (be it a product, a company or a public entity) givebirth to the brand image of that entity. Internet has become in recent years aprivileged place for the emergence and dissemination of opinions and puttingWeb 2.0 at the head of observatories of opinions. The latter being a means ofaccessing the knowledge of the opinion of the world population.The image is here understood as the idea that a person or a group of peopleis that entity. This idea carries a priori on a particular subject and is onlyvalid in context for a given time. This perceived image is different from theentity initially wanted to broadcast (eg via a communication campaign). Moreover,in reality, there are several images in the end living together in parallel onthe network, each specific to a community and all evolve differently over time(imagine how would be perceived in each camp together two politicians edgesopposite). Finally, in addition to the controversy caused by the voluntary behaviorof some entities to attract attention (think of the declarations required orshocking). It also happens that the dissemination of an image beyond the frameworkthat governed the and sometimes turns against the entity (for example,« marriage for all » became « the demonstration for all »). The views expressedthen are so many clues to understand the logic of construction and evolution ofthese images. The aim is to be able to know what we are talking about and howwe talk with filigree opportunity to know who is speaking.viiIn this thesis we propose to use several simple supervised statistical automaticmethods to monitor entity’s online reputation based on textual contentsmentioning it. More precisely we look the most important contents and theirsauthors (from a reputation manager point-of-view). We introduce an optimizationprocess allowing us to enrich the data using a simulated relevance feedback(without any human involvement). We also compare content contextualizationmethod using information retrieval and automatic summarization methods.Wealso propose a reflection and a new approach to model online reputation, improveand evaluate reputation monitoring methods using Partial Least SquaresPath Modelling (PLS-PM). In designing the system, we wanted to address localand global context of the reputation. That is to say the features can explain thedecision and the correlation betweens topics and reputation. The goal of ourwork was to propose a different way to combine usual methods and featuresthat may render reputation monitoring systems more accurate than the existingones. We evaluate and compare our systems using state of the art frameworks: Imagiweb and RepLab. The performances of our proposals are comparableto the state of the art. In addition, the fact that we provide reputation modelsmake our methods even more attractive for reputation manager or scientistsfrom various fields

    Lexical Context for Profiling Reputation of Corporate Entities

    No full text
    International audienceOpinion and trend mining on micro-blogs like Twitter recently attracted research interest in several fields including Information Retrieval (IR) and Natural Language Processing (NLP). However, the performance of existing approaches is limited by the quality of available training material. Moreover, explaining automatic systems' suggestions for decision support is a difficult task thanks to this lack of data. One of the promising solutions of this issue is the enrichment of textual content using large micro-blog archives or external document collections, e.g. Wikipedia. Despite some advantages in Reputation Dimension Classification (RDC) task pushed by RepLab, it remains a research challenge. In this paper we introduce a supervised classification method for RDC based on a threshold intersection graph. We analyzed the impact of various micro-blogs extension methods on RDC performance. We demonstrated that simple statistical NLP methods that do not require any external resources can be easily optimized to outperform the state-of-the-art approaches in RDC task. Then, the conducted experiments proved that the micro-blog enrichment by effective expansion techniques can improve classification quality. Lexical Context for Profiling Reputation of Corporate Entities. Available from: https://www.researchgate.net/publication/313846200_Lexical_Context_for_Profiling_Reputation_of_Corporate_Entities [accessed Jun 12, 2017]
    corecore