835 research outputs found

    Ovarian fluid impacts flagellar beating and biomechanical metrics of sperm between alternative reproductive tactics

    Get PDF
    Alternative reproductive tactics (ARTs) are prevalent in nature, where smaller parasitic males typically have better sperm quality than larger territorial guard males. At present, it is unclear what is causing this phenomenon. Our objective was to gain insights into sperm form and function by examining flagellar beating patterns (beat frequency, wave amplitude, bend length, bend angle, wave velocity) and biomechanical sperm metrics (velocity, hydrodynamic power output, propulsive efficiency) of wild spawning Chinook salmon ARTs. Ovarian fluid and milt were collected to form a series of eight experimental blocks, each composed of ovarian fluid from a unique female and sperm from a unique pair of parasitic jack and guard hooknose males. Sperm from each ART were activated in river water and ovarian fluid. Flagellar parameters were evaluated from recordings using high-speed video microscopy and biomechanical metrics were quantified. We show that ART has an impact on flagellar beating, where jacks had a higher bend length and bend angle than hooknoses. Activation media also impacted the pattern of flagellar parameters, such that beat frequency, wave velocity and bend angle declined, while wave amplitude of flagella increased when ovarian fluid was incorporated into activation media. Furthermore, we found that sperm from jacks swam faster than those from hooknoses and required less hydrodynamic power output to propel themselves in river water and ovarian fluid. Jack sperm were also more efficient at swimming than hooknose sperm, and propulsive efficiency increased when cells were activated in ovarian fluid. The results demonstrate that sperm biomechanics may be driving divergence in competitive reproductive success between ARTs

    POPCOM platform: Composites Advanced Manufacturing

    Get PDF
    National audiencePOPCOM Composites Advanced Manufacturing Platform @ IMT LIlle Douai : Original facilities for development and industrialization of structural composites and reinforced polymers, embracing the whole chain of product life cycle … the ‘’Swiss Army Knife’’ of composites

    Fluctuation and fixation of rodenticide resistance alleles in Rattus norvegicus

    Get PDF
    Berthier, K., Benoit, E., Berny, P., Lasseur, R., Merville, A., Peigneaux, F., Cosson, J.-F

    Taxon Appearance From Extraction and Amplification Steps Demonstrates the Value of Multiple Controls in Tick Microbiota Analysis

    Get PDF
    Background: The development of high-throughput sequencing technologies has substantially improved analysis of bacterial community diversity, composition, and functions. Over the last decade, high-throughput sequencing has been used extensively to identify the diversity and composition of tick microbial communities. However, a growing number of studies are warning about the impact of contamination brought along the different steps of the analytical process, from DNA extraction to amplification. In low biomass samples, e.g., individual tick samples, these contaminants may represent a large part of the obtained sequences, and thus generate considerable errors in downstream analyses and in the interpretation of results. Most studies of tick microbiota either do not mention the inclusion of controls during the DNA extraction or amplification steps, or consider the lack of an electrophoresis signal as an absence of contamination. In this context, we aimed to assess the proportion of contaminant sequences resulting from these steps. We analyzed the microbiota of individual Ixodes ricinus ticks by including several categories of controls throughout the analytical process: homogenization, DNA extraction, and DNA amplification. Results: Controls yielded a significant number of sequences (1, 126–13, 198 mean sequences, depending on the control category). Some operational taxonomic units (OTUs) detected in these controls belong to genera reported in previous tick microbiota studies. In this study, these OTUs accounted for 50.9% of the total number of sequences in our samples, and were considered contaminants. Contamination levels (i.e., the percentage of sequences belonging to OTUs identified as contaminants) varied with tick instar and sex: 76.3% of nymphs and 75% of males demonstrated contamination over 50%, while most females (65.7%) had rates lower than 20%. Contamination mainly corresponded to OTUs detected in homogenization and extraction reagent controls, highlighting the importance of carefully controlling these steps. Conclusion: Here, we showed that contaminant OTUs from sample laboratory processing steps can represent more than half the total sequence yield in sequencing runs, and lead to unreliable results when characterizing tick microbial communities. We thus strongly advise the routine use of negative controls in tick microbiota studies, and more generally in studies involving low biomass samples

    Temporal patterns in Ixodes ricinus microbial communities: an insight into tick-borne microbe interactions

    Get PDF
    Background: Ticks transmit pathogens of medical and veterinary importance and are an increasing threat to human and animal health. Assessing disease risk and developing new control strategies requires identifying members of the tick-borne microbiota as well as their temporal dynamics and interactions. Methods: Using high-throughput sequencing, we studied the Ixodes ricinus microbiota and its temporal dynamics. 371 nymphs were monthly collected during three consecutive years in a peri-urban forest. After a Poisson lognormal model was adjusted to our data set, a principal component analysis, sparse network reconstruction, and differential analysis allowed us to assess seasonal and monthly variability of I. ricinus microbiota and interactions within this community. Results: Around 75% of the detected sequences belonged to five genera known to be maternally inherited bacteria in arthropods and to potentially circulate in ticks: Candidatus Midichloria, Rickettsia, Spiroplasma, Arsenophonus and Wolbachia. The structure of the I. ricinus microbiota varied over time with interannual recurrence and seemed to be mainly driven by OTUs commonly found in the environment. Total network analysis revealed a majority of positive partial correlations. We identified strong relationships between OTUs belonging to Wolbachia and Arsenophonus, evidence for the presence of the parasitoid wasp Ixodiphagus hookeri in ticks. Other associations were observed between the tick symbiont Candidatus Midichloria and pathogens belonging to Rickettsia. Finally, more specific network analyses were performed on TBP-infected samples and suggested that the presence of pathogens belonging to the genera Borrelia, Anaplasma and Rickettsia may disrupt microbial interactions in I. ricinus. Conclusions: We identified the I. ricinus microbiota and documented marked shifts in tick microbiota dynamics over time. Statistically, we showed strong relationships between the presence of specific pathogens and the structure of the I. ricinus microbiota. We detected close links between some tick symbionts and the potential presence of either pathogenic Rickettsia or a parasitoid in ticks. These new findings pave the way for the development of new strategies for the control of ticks and tick-borne diseases. [MediaObject not available: see fulltext.] © 2021, The Author(s)
    • …
    corecore