404 research outputs found
Mediated tunable coupling of flux qubits
It is sketched how a monostable rf- or dc-SQUID can mediate an inductive
coupling between two adjacent flux qubits. The nontrivial dependence of the
SQUID's susceptibility on external flux makes it possible to continuously tune
the induced coupling from antiferromagnetic (AF) to ferromagnetic (FM). In
particular, for suitable parameters, the induced FM coupling can be
sufficiently large to overcome any possible direct AF inductive coupling
between the qubits.
The main features follow from a classical analysis of the multi-qubit
potential. A fully quantum treatment yields similar results, but with a
modified expression for the SQUID susceptibility.
Since the latter is exact, it can also be used to evaluate the
susceptibility--or, equivalently, energy-level curvature--of an isolated
rf-SQUID for larger shielding and at degenerate flux bias, i.e., a (bistable)
qubit. The result is compared to the standard two-level (pseudospin) treatment
of the anticrossing, and the ensuing conclusions are verified numerically.Comment: REVTeX 4, 16 pp., 4 EPS figures. N.B.: "Alec" is my first, and
"Maassen van den Brink" my family name. v2: major expansion and rewriting,
new title and co-author; to appear in New Journal of Physics special issue
(R. Fazio, ed.
Microwave-induced thermal escape in Josephson junctions
We investigate, by experiments and numerical simulations, thermal activation
processes of Josephson tunnel junctions in the presence of microwave radiation.
When the applied signal resonates with the Josephson plasma frequency
oscillations, the switching current may become multi-valued in a temperature
range far exceeding the classical to quantum crossover temperature. Plots of
the switching currents traced as a function of the applied signal frequency
show very good agreement with the functional forms expected from Josephson
plasma frequency dependencies on the bias current. Throughout, numerical
simulations of the corresponding thermally driven classical Josephson junction
model show very good agreement with the experimental data.Comment: 10 pages and 4 figure
Resonant effects in a SQUID qubit subjected to non adiabatic changes
By quickly modifying the shape of the effective potential of a double SQUID
flux qubit from a single-well to a double-well condition, we experimentally
observe an anomalous behavior, namely an alternance of resonance peaks, in the
probability to find the qubit in a given flux state. The occurrence of
Landau-Zener transitions as well as resonant tunneling between degenerate
levels in the two wells may be invoked to partially justify the experimental
results. A quantum simulation of the time evolution of the system indeed
suggests that the observed anomalous behavior can be imputable to quantum
coherence effects. The interplay among all these mechanisms has a practical
implication for quantum computing purposes, giving a direct measurement of the
limits on the sweeping rates possible for a correct manipulation of the qubit
state by means of fast flux pulses, avoiding transitions to non-computational
states.Comment: 6 pages and 6 figures. The paper, as it is, has been accepted for
publication on PRB on March 201
Return current in hysteretic Josephson junctions: Experimental distribution in the thermal activation regime
We present an experimental study on the retrapping process of a hysteretic, high-quality Josephson junction; namely, we have measured the distribution of the values at which the junction switches back from the voltage state to the zero-voltage state, as a function of the applied magnetic field. While the opposite process (escape from the zero-voltage state) has been extensively studied in the past, both from the theoretical and the experimental point of view, little is found in the literature on the retrapping process. In terms of the tilted washboard potential, the process corresponds to the retrapping from the running state to a locked state in a potential well. The interest of the measurements is in the fact that the value of the return current can be directly related to the dissipation in the junction. While the deterministic behavior, experimentally measured through the I–V curve, appears to be in agreement with the theoretical predictions, even in minor details, the statistical behavior is strongly different from what is expected. The disagreement is found even in zero-applied magnetic field and it cannot be attributed to external noise in the system. From the experimental statistical properties, we find values for the effective dissipation much lower than those obtained from the deterministic curves, a result which could be of interest in experiments on the observation of macroscopic quantum phenomena
Superconducting tunable flux qubit with direct readout scheme
We describe a simple and efficient scheme for the readout of a tunable flux
qubit, and present preliminary experimental tests for the preparation,
manipulation and final readout of the qubit state, performed in incoherent
regime at liquid Helium temperature. The tunable flux qubit is realized by a
double SQUID with an extra Josephson junction inserted in the large
superconducting loop, and the readout is performed by applying a current ramp
to the junction and recording the value for which there is a voltage response,
depending on the qubit state. This preliminary work indicates the feasibility
and efficiency of the scheme.Comment: 10 pages, 5 figure
Characterization of the KID-Based Light Detectors of CALDER
The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution
(CALDER) project is the development of light detectors with active area of
cm and noise energy resolution smaller than 20 eV RMS,
implementing phonon-mediated kinetic inductance detectors. The detectors are
developed to improve the background suppression in large-mass bolometric
experiments such as CUORE, via the double read-out of the light and the heat
released by particles interacting in the bolometers. In this work, we present
the characterization of the first light detectors developed by CALDER. We
describe the analysis tools to evaluate the resonator parameters (resonant
frequency and quality factors) taking into account simultaneously all the
resonance distortions introduced by the read-out chain (as the feed-line
impedance and its mismatch) and by the power stored in the resonator itself. We
detail the method for the selection of the optimal point for the detector
operation (maximizing the signal-to-noise ratio). Finally, we present the
response of the detector to optical pulses in the energy range of 0-30 keV
New application of superconductors: high sensitivity cryogenic light detectors
In this paper we describe the current status of the CALDER project, which is
developing ultra-sensitive light detectors based on superconductors for
cryogenic applications. When we apply an AC current to a superconductor, the
Cooper pairs oscillate and acquire kinetic inductance, that can be measured by
inserting the superconductor in a LC circuit with high merit factor.
Interactions in the superconductor can break the Cooper pairs, causing sizable
variations in the kinetic inductance and, thus, in the response of the LC
circuit. The continuous monitoring of the amplitude and frequency modulation
allows to reconstruct the incident energy with excellent sensitivity. This
concept is at the basis of Kinetic Inductance Detectors (KIDs), that are
characterized by natural aptitude to multiplexed read-out (several sensors can
be tuned to different resonant frequencies and coupled to the same line),
resolution of few eV, stable behavior over a wide temperature range, and ease
in fabrication. We present the results obtained by the CALDER collaboration
with 2x2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the
performances of the first prototypes are already competitive with those of
other commonly used light detectors, and we discuss the strategies for a
further improvement
- …