659 research outputs found

    Robust Deep Sensing Through Transfer Learning in Cognitive Radio

    Full text link
    We propose a robust spectrum sensing framework based on deep learning. The received signals at the secondary user's receiver are filtered, sampled and then directly fed into a convolutional neural network. Although this deep sensing is effective when operating in the same scenario as the collected training data, the sensing performance is degraded when it is applied in a different scenario with different wireless signals and propagation. We incorporate transfer learning into the framework to improve the robustness. Results validate the effectiveness as well as the robustness of the proposed deep spectrum sensing framework

    Cross layer resource allocation design for uplink video OFDMA wireless systems

    Get PDF
    Abstract-We study an uplink video communication system with multiple users in a centralized wireless cell. The multiple access scheme is Orthogonal Frequency Division Multiple Access (OFDMA). Both physical layer channel state information (CSI) and application layer rate distortion (RD) information of video streams are collected by the base station. With the goal of minimizing the average video distortion across all the users in the system, we design an iterative resource allocation algorithm for subcarrier assignment and power allocation. Based on the physical layer resource allocation decision, the user will adapt the application layer video source coding rate. To show the advantage of this cross layer algorithm, numerical results are compared with two baseline resource allocation algorithms using only physical layer information or only application layer information. Bit-level simulation results are presented which take into account the imperfection of the video coding rate control, as well as channel errors. Index Terms-Cross layer design, multiuser video communications system, OFDMA, video multiplexing

    Computational Characterization and Prediction of Estrogen Receptor Coactivator Binding Site Inhibitors

    Get PDF
    Many carcinogens have been shown to cause tissue specific tumors in animal models. The mechanism for this specificity has not been fully elucidated and is usually attributed to differences in organ metabolism. For heterocyclic amines, potent carcinogens that are formed in well-done meat, the ability to either bind to the estrogen receptor and activate or inhibit an estrogenic response will have a major impact on carcinogenicity. Here we describe our work with the human estrogen receptor alpha (hERa) and the mutagenic/carcinogenic heterocyclic amines PhIP, MeIQx, IFP, and the hydroxylated metabolite of PhIP, N2-hydroxy-PhIP. We found that PhIP, in contrast to the other heterocyclic amines, increased cell-proliferation in MCF-7 human breast cancer cells and activated the hERa receptor. We show mechanistic data supporting this activation both computationally by homology modeling and docking, and by NMR confirmation that PhIP binds with the ligand binding domain (LBD). This binding competes with estradiol (E2) in the native E2 binding cavity of the receptor. We also find that other heterocyclic amines and N2-hydroxy-PhIP inhibit ER activation presumably by binding into another cavity on the LBD. Moreover, molecular dynamics simulations of inhibitory heterocyclic amines reveal a disruption of the surface of the receptor protein involved with protein-protein signaling. We therefore propose that the mechanism for the tissue specific carcinogenicity seen in the rat breast tumors and the presumptive human breast cancer associated with the consumption of well-done meat maybe mediated by this receptor activation

    Device-to-Device Assisted Video Transmission

    Get PDF
    To increase spectrum efficiency, researchers envi- sion a device-to-device (D2D) communication system in which a closely located mobile device pair may share the same spectrum with a cellular user. By opportunistically choosing the frequency, the D2D pair may increase the spectrum efficiency in terms of data rate per Hertz, at the price of additional interference to that cellular user. In previous models, users either stop cellular transmission and switch to D2D transmission or vice versa. However, if the cell is fully loaded, a D2D pair will not be able to switch back to the conventional mode because no extra resource is available. In this paper, we propose a D2D assisted model, where a D2D link is enabled to assist transmission, while keeping the conventional cellular transmission. In this way, the D2D link can be turned on and off according to the link quality. We also propose a PHY-layer study for the transmission scheme in such a way that the system throughput and the video reception quality is always improved compared to a conventional link

    Joint Source-Channel Coding and Unequal Error Protection for Video Plus Depth

    Get PDF
    Abstract-We consider the joint source-channel coding (JSCC) problem of 3-D stereo video transmission in video plus depth format over noisy channels. Full resolution and downsampled depth maps are considered. The proposed JSCC scheme yields the optimum color and depth quantization parameters as well as the optimum forward error correction code rates used for unequal error protection (UEP) at the packet level. Different coding scenarios are compared and the UEP gain over equal error protection is quantified for flat Rayleigh fading channels. Index Terms-3-D video, joint source-channel coding, unequal error protection, video plus depth

    Early changes in biochemical markers of bone turnover and their relationship with bone mineral density changes after 24 months of treatment with teriparatide

    Get PDF
    Summary We report the changes in biochemical markers of bone formation during the first 6 months of teriparatide therapy in postmenopausal women with osteoporosis according to previous antiresorptive treatment. Prior therapy does not adversely affect the response to teriparatide treatment. Similar bone markers levels are reached after 6 months of treatment. Introduction The response of biochemical markers of bone turnover with teriparatide therapy in subjects who have previously received osteoporosis drugs is not fully elucidated. We examined biochemical markers of bone formation in women with osteoporosis treated with teriparatide and determined: (1) whether the response is associated with prior osteoporosis therapy, (2) which marker shows the best performance for detecting a response to therapy, and (3) the correlations between early changes in bone markers and subsequent bone mineral density (BMD) changes after 24 months of teriparatide. Methods We conducted a prospective, open-label, 24-month study at 95 centers in 10 countries in 758 postmenopausal women with established osteoporosis (n = 181 treatment-naïve) who had at least one post-baseline bone marker determination. Teriparatide (20 μg/day) was administered for up to 24 months. We measured procollagen type I N-terminal propeptide (PINP), bone-specific alkaline phosphatase (b-ALP), and total alkaline phosphatase (t-ALP) at baseline, 1 and 6 months, and change in BMD at the lumbar spine, total hip and femoral neck from baseline to 24 months. Results Significant increases in formation markers occurred after 1 month of teriparatide regardless of prior osteoporosis therapy. The absolute increase at 1 month was lower in previously treated versus treatment-naïve patients, but after 6 months all groups reached similar levels. PINP showed the best signal-to-noise ratio. Baseline PINP correlated positively and significantly with BMD response at 24 months. Conclusions This study suggests that the long-term responsiveness of bone formation markers to teriparatide is not affected in subjects previously treated with antiresorptive drugs
    • …
    corecore