15 research outputs found

    Akt inhibitors induce apoptosis in chronic lymphocytic leukemia cells

    Get PDF
    Background: The phosphatidylinositol-3-kinase/Akt pathway has been described to be critical in the survival of chronic lymphocytic leukemia cells. In this study we analyzed the effect of two selective chemical inhibitors of Akt (Akti-1/2 and A-443654) on the survival of chronic lymphocytic leukemia cells. Design and Methods: Using cytometry we studied the cytotoxic effects of Akt inhibitors on peripheral B and T lymphocytes from patients with chronic lymphocytic leukemia and from healthy donors. We studied the changes induced by Akti-1/2 and A-443654 at the mRNA level by performing reverse transcriptase multiplex ligation-dependent probe amplification. We also studied the changes induced by both Akt inhibitors in some BCL-2 protein family members on chronic lymphocytic leukemia cells by western blotting. Moreover, we analyzed the cytotoxic effect of Akt inhibitors in patients' cells with deleted/mutated TP53. Results: Both inhibitors induced apoptosis in chronic lymphocytic leukemia cells in a dose-dependent manner. Moreover, B cells from patients with chronic lymphocytic leukemia were more sensitive to Akt inhibitors than T cells from leukemic patients, and B or T cells from healthy donors. Survival factors for chronic lymphocytic leukemia cells, such as interleukin-4 and stromal cell-derived factor-1 alpha, were not able to block the apoptosis induced by either Akt inhibitor. Akti-1/2 did not induce any change in the mRNA expression profile of genes involved in apoptosis, while A-443654 induced some changes, including an increase in NOXA and PUMA mRNA levels, suggesting the existence of additional targets for A-443654. Both inhibitors induced an increase in PUMA and NOXA protein levels, and a decrease in MCL-1 protein level. Moreover, Akti-1/2 and A-443654 induced apoptosis irrespective of TP53 status. Conclusions: These results demonstrate that Akt inhibitors induce apoptosis of chronic lymphocytic leukemia cells and might be a new therapeutic option for the treatment of chronic lymphocytic leukemia

    The potential anticancer agent PK11195 induces apoptosis irrespective of p53 and ATM status in chronic lymphocytic leukemia cells

    Get PDF
    Background and Objectives The potential anticancer agent 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a translocator protein (18KDa) (TSPO) ligand, facilitates the induction of cell death by a variety of cytotoxic and chemotherapeutic agents. Primary chronic lymphocytic leukemia (CLL) cells overexpress TSPO. The aim of this study was to examine the effects of PK11195 on CLL cells. Design and Methods Using cytometric analysis, we studied the cytotoxic effects of PK11195 on peripheral B and T lymphocytes from patients with CLL and from healthy donors. Western blot and cytometric analyses were used to study the mitochondrial effects of PK11195 on CLL cells. Moreover, we analyzed the cytotoxic effect of PK11195 in patients' cells with mutated p53 or ATM. Results PK11195 induces apoptosis and had additive effects with chemotherapeutic drugs in primary CLL cells. Other TSPO ligands such as RO 5-4864 and FGIN-1-27 also induce apoptosis in CLL cells. PK11195 induces mitochondrial depolarization and cytochrome c release upstream of caspase activation, and dithiocyana-tostilbene-2,2-disulfonic acid (DIDS), a voltage-dependent anion channel (VDAC) inhibitor, inhibits PK11195-induced apoptosis, demonstrating a direct involvement of mitochondria. CLL cells and normal B cells are more sensitive than T cells to PK11195-induced apoptosis. Interestingly, PK11195 induced apoptosis in CLL cells irrespective of their p53 or ATM status. Interpretation and Conclusions These results suggest that PK11195 alone or in combination with chemotherapeutic drugs might be a new therapeutic option for the treatment of CLL

    Fluorizoline-induced apoptosis requires prohibitins in nematodes and human cells

    Get PDF
    We previously showed that fluorizoline, a fluorinated thiazoline compound, binds to both subunits of the mitochondrial prohibitin (PHB) complex, PHB1 and PHB2, being the expression of these proteins required for fluorizoline-induced apoptosis in mouse embryonic fibroblasts. To investigate the conservation of this apoptotic mechanism, we studied the effect of PHB downregulation on fluorizoline activity on two human cell lines, HEK293T and U2OS. Then, we asked whether PHBs mediate the effect of fluorizoline in a multicellular organism. Interestingly, reduced levels of PHBs in the human cells impaired the induction of apoptosis by fluorizoline. We observed that fluorizoline has a detrimental dose-dependent effect on the development and survival of the nematode model Caenorhabditis elegans. Besides, such effects of fluorizoline treatment in living nematodes were absent in PHB mutants. Finally, we further explored the apoptotic pathway triggered by fluorizoline in human cell lines. We found that the BH3-only proteins NOXA, BIM and PUMA participate in fluorizoline-induced apoptosis and that the induction of NOXA and PUMA is dependent on PHB expression.This work was supported by grants from the Agencia Estatal de InvestigaciĂłn (Ministerio de Ciencia e InnovaciĂłn), European Regional Development Fund (ERDF), the European Research Council, the Junta de AndalucĂ­a and the Instituto de Salud Carlos III (ISCIII) (SAF2017-83178-R to J.G.; PID2019-107991RB-I00 to R.L.; ERC-2011-StG-281691 and C2A ID: 42571/Exp: 70806 to M.A-S; PI15-00895 to J.C.). J.S-E and I.S-V are recipients of research fellowships from the Ministerio de Ciencia e InnovaciĂłn. S.N-V is recipient of a research fellowship from Universitat de Barcelona. MD.M-B was supported by the Plan de Empleo Juvenil (EJP09) from the Junta de AnadalucĂ­a. D.K has a FI AGAUR fellowship from Generalitat de Catalunya

    Activation of the Integrated Stress Response and ER Stress Protect from Fluorizoline-Induced Apoptosis in HEK293T and U2OS Cell Lines

    Get PDF
    The prohibitin (PHB)-binding compound fluorizoline as well as PHB-downregulation activate the integrated stress response (ISR) in HEK293T and U2OS human cell lines. This activation is denoted by phosphorylation of eIF2 alpha and increases in ATF4, ATF3, and CHOP protein levels. The blockage of the activation of the ISR by overexpression of GRP78, as well as an increase in IRE1 activity, indicate the presence of ER stress after fluorizoline treatment. The inhibition of the ER stress response in HEK293T and U2OS led to increased sensitivity to fluorizoline-induced apoptosis, indicating a pro-survival role of this pathway after fluorizoline treatment in these cell lines. Fluorizoline induced an increase in calcium concentration in the cytosol and the mitochondria. Finally, two different calcium chelators reduced fluorizoline-induced apoptosis in U2OS cells. Thus, we have found that fluorizoline causes increased ER stress and activation of the integrated stress response, which in HEK293T and U2OS cells are protective against fluorizoline-induced apoptosis

    The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells through the upregulation of NOXA and synergizes with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax

    Get PDF
    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins. In the study herein, the pro-apoptotic effect of fluorizoline was assessed in 34 primary samples from patients with chronic lymphocytic leukemia. Fluorizoline induced apoptosis in chronic lymphocytic leukemia cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespective of patients' clinical or genetic features, whereas normal T lymphocytes were less sensitive. Fluorizoline increased the protein levels of the pro-apoptotic B-cell lymphoma 2 family member NOXA in chronic lymphocytic leukemia cells. Furthermore, fluorizoline synergized with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax to induce apoptosis. These results suggest that targeting prohibitins could be a new therapeutic strategy for chronic lymphocytic leukemia

    A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation

    Get PDF
    We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa-/-/Bim-/- MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway

    The Prohibitin-Binding Compound Fluorizoline Activates the Integrated Stress Response through the eIF2α Kinase HRI

    No full text
    Fluorizoline is a synthetic molecule that induces apoptosis, by selectively targeting prohibitins (PHBs), through induction of the BH3-only protein NOXA. This induction is transcriptionally regulated by the integrated stress response (ISR)-related transcription factors ATF3 and ATF4. Here, we evaluate the role of the four eIF2α kinases, to decipher which is responsible for the mechanism of ISR activation triggered by fluorizoline in HeLa and HAP1 cells. First, we demonstrated the involvement of the eIF2α kinases using ISR inhibitor (ISRIB) and by simultaneous downregulation of all four eIF2α kinases, as both approaches were able to increase cell resistance to fluorizoline-induced apoptosis. Furthermore, we confirmed that fluorizoline treatment results in endoplasmic reticulum (ER) stress, as evidenced by PERK activation. Despite PERK activation, this kinase was not directly involved in the ISR activation by fluorizoline. In this regard, we found that the eIF2α kinases are capable of compensating for each other’s loss of function. Importantly, we demonstrated that the mitochondrial-stress-related eIF2α kinase HRI mediates ISR activation after fluorizoline treatment

    Akt inhibitors induce apoptosis in chronic lymphocytic leukemia cells

    No full text
    Background: The phosphatidylinositol-3-kinase/Akt pathway has been described to be critical in the survival of chronic lymphocytic leukemia cells. In this study we analyzed the effect of two selective chemical inhibitors of Akt (Akti-1/2 and A-443654) on the survival of chronic lymphocytic leukemia cells. Design and Methods: Using cytometry we studied the cytotoxic effects of Akt inhibitors on peripheral B and T lymphocytes from patients with chronic lymphocytic leukemia and from healthy donors. We studied the changes induced by Akti-1/2 and A-443654 at the mRNA level by performing reverse transcriptase multiplex ligation-dependent probe amplification. We also studied the changes induced by both Akt inhibitors in some BCL-2 protein family members on chronic lymphocytic leukemia cells by western blotting. Moreover, we analyzed the cytotoxic effect of Akt inhibitors in patients' cells with deleted/mutated TP53. Results: Both inhibitors induced apoptosis in chronic lymphocytic leukemia cells in a dose-dependent manner. Moreover, B cells from patients with chronic lymphocytic leukemia were more sensitive to Akt inhibitors than T cells from leukemic patients, and B or T cells from healthy donors. Survival factors for chronic lymphocytic leukemia cells, such as interleukin-4 and stromal cell-derived factor-1 alpha, were not able to block the apoptosis induced by either Akt inhibitor. Akti-1/2 did not induce any change in the mRNA expression profile of genes involved in apoptosis, while A-443654 induced some changes, including an increase in NOXA and PUMA mRNA levels, suggesting the existence of additional targets for A-443654. Both inhibitors induced an increase in PUMA and NOXA protein levels, and a decrease in MCL-1 protein level. Moreover, Akti-1/2 and A-443654 induced apoptosis irrespective of TP53 status. Conclusions: These results demonstrate that Akt inhibitors induce apoptosis of chronic lymphocytic leukemia cells and might be a new therapeutic option for the treatment of chronic lymphocytic leukemia
    corecore