4 research outputs found

    GPS-Derived Interseismic Fault Locking along the Jalisco–Colima Segment of the Mexico Subduction zone

    Get PDF
    Northeastward subduction of the oceanic Rivera and Cocos plates in western Mexico poses a poorly understood seismic hazard to the overlying areas of the North America plate. We estimate the magnitude and distribution of interseismic locking along the northern ∼500 km of the Mexico subduction zone, with a series of elastic half-space inversions that optimize the fits to the velocities of 57 GPS stations in western Mexico. All velocities were corrected for the co-seismic, afterslip and viscoelastic rebound effects of the 1995 Colima–Jalisco and 2003 Tecomán earthquakes. We explore the robustness of interseismic locking estimates to a variety of mantle Maxwell times that are required for the viscoelastic corrections, to the maximum permitted depth for locking of the subduction interface and to the location assigned to the Rivera–Cocos–North America plate triple junction offshore from western Mexico. The best-fitting locking solutions are associated with a maximum locking depth of 40 km, a triple junction location ∼50 km northwest of the Manzanillo Trough and a mantle Maxwell time of 15 yr (viscosity of 2 × 1019 Pa s). Checkerboard tests show that the locking distribution is best resolved at intermediate depths (10–40 km). All of our inversions define a gradual transition from strong locking (i.e. 70–100 per cent) of most (70 per cent) of the Rivera–North America subduction interface to strong but less uniform locking below the Manzanillo Trough, where oceanic lithosphere transitional between the Cocos and Rivera plate subducts, to weak to moderate locking (averaging 55 per cent) of the Michoacán segment of the Cocos–North America interface. Strong locking of the ∼125-km-long trench segment offshore from Puerto Vallarta and other developed coastal areas, where our modelling indicates an average annual elastic slip-rate deficit of ∼20 mm yr−1, implies that ∼1.8 m of unrelieved plate slip has accrued since the segment last ruptured in 1932, sufficient for an M ∼ 8.0 earthquake

    Co-Seismic and Post-Seismic deformation for the 1995 Colima–Jalisco and 2003 Tecoman thrust earthquakes, Mexico subduction zone, ́ from modelling of GPS data

    Get PDF
    We invert ∼25 yr of campaign and continuous Global Positioning System daily positions at 62 sites in southwestern Mexico to estimate co-seismic and post-seismic afterslip solutions for the 1995 Mw = 8.0 Colima–Jalisco and the 2003 Mw = 7.5 Tecomán earthquakes, and the long-term velocity of each GPS site. Estimates of the viscoelastic effects of both earthquakes from a 3-D model with an elastic crust and subducting slab, and linear Maxwell viscoelastic mantle are used to correct the GPS position time-series prior to our time-dependent inversions. The preferred model, which optimizes the fit to data from several years of rapid post-seismic deformation after the larger 1995 earthquake, has a mantle Maxwell time of 15 yr (viscosity of 2 × 1019 Pa s), although upper-mantle viscosities as low as 5 × 1018 Pa s cannot be excluded. Our geodetic slip solutions for both earthquakes agree well with previous estimates derived from seismic data or via static co-seismic offset modelling. The afterslip solutions for both earthquakes suggest that most afterslip coincided with the rupture areas or occurred farther downdip and had cumulative moments similar to or larger than the co-seismic moments. Afterslip thus appears to relieve significant stress along the Rivera plate subduction interface, including the area of the interface between a region of deep non-volcanic tremor and the shallower seismogenic zone. We compare the locations of the seismogenic zone, afterslip and tremor in our study area to those of the neighbouring Guerrero and Oaxaca segments of the Mexico subduction zone. Our newly derived interseismic GPS site velocities, the first for western Mexico that are corrected for the co-seismic and post-seismic effects of the 1995 and 2003 earthquakes, are essential for future estimates of the interseismic subduction interface locking and hence the associated seismic hazard

    Rate and processes of river network rearrangement during incipient faulting: The case of the Cahabon river, Guatemala

    No full text
    Deeply incised river networks are generally regarded as robust features that are not easily modified by erosion or tectonics. Although the reorganization of deeply incised drainage systems has been documented, the corresponding importance with regard to the overall landscape evolution of mountain ranges and the factors that permit such reorganizations are poorly understood. To address this problem, we have explored the rapid drainage reorganization that affected the Cahabon River in Guatemala during the Quaternary. Sediment-provenance analysis, field mapping, and electrical resistivity tomography (ERT) imaging are used to reconstruct the geometry of the valley before the river was captured. Dating of the abandoned valley sediments by the Be-10-Al-26 burial method and geomagnetic polarity analysis allow us to determine the age of the capture events and then to quantify several processes, such as the rate of tectonic deformation of the paleovalley, the rate of propagation of post-capture drainage reversal, and the rate at which canyons that formed at the capture sites have propagated along the paleovalley. Transtensional faulting started 1 to 3 million years ago, produced ground tilting and ground faulting along the Cahabon River, and thus generated differential uplift rate of 0.3 +/- 0.1 up to 0.7 +/- 0.4 mm . y(-1) along the river's course. The river responded to faulting by incising the areas of relative uplift and depositing a few tens of meters of sediment above the areas of relative subsidence. Then, the river experienced two captures and one avulsion between 700 ky and 100 ky. The captures breached high-standing ridges that separate the Cahabon River from its captors. Captures occurred at specific points where ridges are made permeable by fault damage zones and/or soluble rocks. Groundwater flow from the Cahabon River down to its captors likely increased the erosive power of the captors thus promoting focused erosion of the ridges. Valley-fill formation and capture occurred in close temporal succession, suggesting a genetic link between the two. We suggest that the aquifers accumulated within the valley-fills, increased the head along the subterraneous system connecting the Cahabon River to its captors, and promoted their development. Upon capture, the breached valley experienced widespread drainage reversal toward the capture sites. We attribute the generalized reversal to combined effects of groundwater sapping in the valley-fill, axial drainage obstruction by lateral fans, and tectonic tilting. Drainage reversal increased the size of the captured areas by a factor of 4 to 6. At the capture sites, 500 m deep canyons have been incised into the bedrock and are propagating upstream at a rate of 3 to 11 mm . y(-1) deepening at a rate of 0.7 to 1 5 mm . y(-1). At this rate, 1 to 2 million years will be necessary for headward erosion to completely erase the topographic expression of the paleovalley. It is concluded that the rapid reorganization of this drainage system was made possible by the way the river adjusted to the new tectonic strain field, which involved transient sedimentation along the river's course. If the river had escaped its early reorganization and had been given the time necessary to reach a new dynamic equilibrium, then the transient conditions that promoted capture would have vanished and its vulnerability to capture would have been strongly reduced
    corecore